274,405 research outputs found

    On the Derivative Imbalance and Ambiguity of Functions

    Full text link
    In 2007, Carlet and Ding introduced two parameters, denoted by NbFNb_F and NBFNB_F, quantifying respectively the balancedness of general functions FF between finite Abelian groups and the (global) balancedness of their derivatives DaF(x)=F(x+a)−F(x)D_a F(x)=F(x+a)-F(x), a∈G∖{0}a\in G\setminus\{0\} (providing an indicator of the nonlinearity of the functions). These authors studied the properties and cryptographic significance of these two measures. They provided for S-boxes inequalities relating the nonlinearity NL(F)\mathcal{NL}(F) to NBFNB_F, and obtained in particular an upper bound on the nonlinearity which unifies Sidelnikov-Chabaud-Vaudenay's bound and the covering radius bound. At the Workshop WCC 2009 and in its postproceedings in 2011, a further study of these parameters was made; in particular, the first parameter was applied to the functions F+LF+L where LL is affine, providing more nonlinearity parameters. In 2010, motivated by the study of Costas arrays, two parameters called ambiguity and deficiency were introduced by Panario \emph{et al.} for permutations over finite Abelian groups to measure the injectivity and surjectivity of the derivatives respectively. These authors also studied some fundamental properties and cryptographic significance of these two measures. Further studies followed without that the second pair of parameters be compared to the first one. In the present paper, we observe that ambiguity is the same parameter as NBFNB_F, up to additive and multiplicative constants (i.e. up to rescaling). We make the necessary work of comparison and unification of the results on NBFNB_F, respectively on ambiguity, which have been obtained in the five papers devoted to these parameters. We generalize some known results to any Abelian groups and we more importantly derive many new results on these parameters

    On algebraic relations between solutions of a generic Painleve equation

    Full text link
    We prove that if y" = f(y,y',t,\alpha, \beta,..) is a generic Painleve equation (i.e. an equation in one of the families PI-PVI but with the complex parameters \alpha, \beta,.. algebraically independent) then any algebraic dependence over C(t) between a set of solutions and their derivatives (y_1,..,y_n,y_1',..,y_n') is witnessed by a pair of solutions and their derivatives (y_i,y_i',y_j,y_j'). The proof combines work by the Japanese school on "irreducibility" of the Painleve equations, with the trichomoty theorem for strongly minimal sets in differentially closed fields.Comment: 23 page

    Examples of derivation-based differential calculi related to noncommutative gauge theories

    Full text link
    Some derivation-based differential calculi which have been used to construct models of noncommutative gauge theories are presented and commented. Some comparisons between them are made.Comment: 22 pages, conference given at the "International Workshop in honour of Michel Dubois-Violette, Differential Geometry, Noncommutative Geometry, Homology and Fundamental Interactions". To appear in a special issue of International Journal of Geometric Methods in Modern Physic

    Aspects of p-adic non-linear functional analysis

    Full text link
    The article provides an introduction to infinite-dimensional differential calculus over topological fields and surveys some of its applications, notably in the areas of infinite-dimensional Lie groups and dynamical systems.Comment: 19 pages; LaTe

    Galois Theory of Parameterized Differential Equations and Linear Differential Algebraic Groups

    Full text link
    We present a Galois theory of parameterized linear differential equations where the Galois groups are linear differential algebraic groups, that is, groups of matrices whose entries are functions of the parameters and satisfy a set of differential equations with respect to these parameters. We present the basic constructions and results, give examples, discuss how isomonodromic families fit into this theory and show how results from the theory of linear differential algebraic groups may be used to classify systems of second order linear differential equations
    • …
    corecore