90,007 research outputs found

    Exploiting structure to cope with NP-hard graph problems: Polynomial and exponential time exact algorithms

    Get PDF
    An ideal algorithm for solving a particular problem always finds an optimal solution, finds such a solution for every possible instance, and finds it in polynomial time. When dealing with NP-hard problems, algorithms can only be expected to possess at most two out of these three desirable properties. All algorithms presented in this thesis are exact algorithms, which means that they always find an optimal solution. Demanding the solution to be optimal means that other concessions have to be made when designing an exact algorithm for an NP-hard problem: we either have to impose restrictions on the instances of the problem in order to achieve a polynomial time complexity, or we have to abandon the requirement that the worst-case running time has to be polynomial. In some cases, when the problem under consideration remains NP-hard on restricted input, we are even forced to do both. Most of the problems studied in this thesis deal with partitioning the vertex set of a given graph. In the other problems the task is to find certain types of paths and cycles in graphs. The problems all have in common that they are NP-hard on general graphs. We present several polynomial time algorithms for solving restrictions of these problems to specific graph classes, in particular graphs without long induced paths, chordal graphs and claw-free graphs. For problems that remain NP-hard even on restricted input we present exact exponential time algorithms. In the design of each of our algorithms, structural graph properties have been heavily exploited. Apart from using existing structural results, we prove new structural properties of certain types of graphs in order to obtain our algorithmic results

    Long Circuits and Large Euler Subgraphs

    Full text link
    An undirected graph is Eulerian if it is connected and all its vertices are of even degree. Similarly, a directed graph is Eulerian, if for each vertex its in-degree is equal to its out-degree. It is well known that Eulerian graphs can be recognized in polynomial time while the problems of finding a maximum Eulerian subgraph or a maximum induced Eulerian subgraph are NP-hard. In this paper, we study the parameterized complexity of the following Euler subgraph problems: - Large Euler Subgraph: For a given graph G and integer parameter k, does G contain an induced Eulerian subgraph with at least k vertices? - Long Circuit: For a given graph G and integer parameter k, does G contain an Eulerian subgraph with at least k edges? Our main algorithmic result is that Large Euler Subgraph is fixed parameter tractable (FPT) on undirected graphs. We find this a bit surprising because the problem of finding an induced Eulerian subgraph with exactly k vertices is known to be W[1]-hard. The complexity of the problem changes drastically on directed graphs. On directed graphs we obtained the following complexity dichotomy: Large Euler Subgraph is NP-hard for every fixed k>3 and is solvable in polynomial time for k<=3. For Long Circuit, we prove that the problem is FPT on directed and undirected graphs

    Graphs of Edge-Intersecting Non-Splitting Paths in a Tree: Representations of Holes-Part II

    Full text link
    Given a tree and a set P of non-trivial simple paths on it, VPT(P) is the VPT graph (i.e. the vertex intersection graph) of the paths P, and EPT(P) is the EPT graph (i.e. the edge intersection graph) of P. These graphs have been extensively studied in the literature. Given two (edge) intersecting paths in a graph, their split vertices is the set of vertices having degree at least 3 in their union. A pair of (edge) intersecting paths is termed non-splitting if they do not have split vertices (namely if their union is a path). We define the graph ENPT(P) of edge intersecting non-splitting paths of a tree, termed the ENPT graph, as the graph having a vertex for each path in P, and an edge between every pair of vertices representing two paths that are both edge-intersecting and non-splitting. A graph G is an ENPT graph if there is a tree T and a set of paths P of T such that G=ENPT(P), and we say that is a representation of G. Our goal is to characterize the representation of chordless ENPT cycles (holes). To achieve this goal, we first assume that the EPT graph induced by the vertices of an ENPT hole is given. In [2] we introduce three assumptions (P1), (P2), (P3) defined on EPT, ENPT pairs of graphs. In the same study, we define two problems HamiltonianPairRec, P3-HamiltonianPairRec and characterize the representations of ENPT holes that satisfy (P1), (P2), (P3). In this work, we continue our work by relaxing these three assumptions one by one. We characterize the representations of ENPT holes satisfying (P3) by providing a polynomial-time algorithm to solve P3-HamiltonianPairRec. We also show that there does not exist a polynomial-time algorithm to solve HamiltonianPairRec, unless P=NP

    Long induced paths in graphs

    Full text link
    We prove that every 3-connected planar graph on nn vertices contains an induced path on Ω(logn)\Omega(\log n) vertices, which is best possible and improves the best known lower bound by a multiplicative factor of loglogn\log \log n. We deduce that any planar graph (or more generally, any graph embeddable on a fixed surface) with a path on nn vertices, also contains an induced path on Ω(logn)\Omega(\sqrt{\log n}) vertices. We conjecture that for any kk, there is a contant c(k)c(k) such that any kk-degenerate graph with a path on nn vertices also contains an induced path on Ω((logn)c(k))\Omega((\log n)^{c(k)}) vertices. We provide examples showing that this order of magnitude would be best possible (already for chordal graphs), and prove the conjecture in the case of interval graphs.Comment: 20 pages, 5 figures - revised versio

    Long paths and cycles in random subgraphs of graphs with large minimum degree

    Full text link
    For a given finite graph GG of minimum degree at least kk, let GpG_{p} be a random subgraph of GG obtained by taking each edge independently with probability pp. We prove that (i) if pω/kp \ge \omega/k for a function ω=ω(k)\omega=\omega(k) that tends to infinity as kk does, then GpG_p asymptotically almost surely contains a cycle (and thus a path) of length at least (1o(1))k(1-o(1))k, and (ii) if p(1+o(1))lnk/kp \ge (1+o(1))\ln k/k, then GpG_p asymptotically almost surely contains a path of length at least kk. Our theorems extend classical results on paths and cycles in the binomial random graph, obtained by taking GG to be the complete graph on k+1k+1 vertices.Comment: 26 page
    corecore