2 research outputs found

    Rajaplaneerimine multi-robot süsteemile jagatud lasti transportimisel

    Get PDF
    Shared payload transportation has emerged as one of the key real-world applications that warrants the deployment of multiple robots. The key motivation stems from the fact that actuation and sensing abilities of multiple robots can be pooled together to transport objects that are either too big or heavy to be handled by a single robot. This thesis proposes algorithmic and software frameworks to achieve precise multi-robot coordination for object transportation. On the algorithmic side, a trajectory optimization formulation is developed which generates collision-free and smooth trajectories for the robots transporting the object. State-of-the art Gradient Descent variants are utilized for obtaining the solution. On the software side, a trajectory planner (local planner) is developed and integrated to Robot Operating System (ROS). The local planner is responsible for calculating individual velocities for any number of robots forming a rigid geometric in-plane constellation. Extensive simulation as well as real-world experiments are performed to demonstrate the validity of the developed solutions. It is demonstrated that how the proposed trajectory optimization approach outperforms off-the-shelf planners with respect to metrics like smoothness and collision avoidance. In estonian: Ühise lasti transportimine mitme roboti poolt on kujunenud üheks rakendusvaldkonnaks, kus mitme roboti samaaegne kasutamine on õigustatud. Mitme roboti andureid ja ajameid on eriti kasulik kasutada transportimaks objekte, mis on ühe roboti jaoks kas liiga suured ja/või rasked. Käesolev lõputöö pakub välja algoritmilise ja tarkvaralise raamistiku, mis võimaldab täpselt koordineerida mitme roboti koostööd ühise lasti liigutamisel. Välja on töötatud trajektooride optimeerimise algoritm, mis genereerib kokkupõrkevabad ja sujuvad ühist objekti kandvate robotite trajektoorid. Selleks on kasutatud nüüdisaegset gradientlaskumise (ingl Gradient Descent) meetodit. Tarkvara poolelt on loodud trajektoori planeerija (lokaalne planeerija) ja see on integreeritud arendusplatvormil ROS (Robot Operating System). Lokaalne planeerija arvutab individuaalsed kiirused igale robotile, mis moodustavad ühise jäiga tasapinnalise kujundi, kusjuures robotite arv kujundis ei ole piiratud. Väljatöötatud lahenduse toimimist on kontrollitud ulatuslike simulatsioonide abil aga ka viies läbi praktilisi katseid. Väljapakutud trajektoori optimeerimise lahendus ületab olemasolevaid planeerijaidd nii trajektoori sujuvuse kui ka kokkupõrgete vältimise võime osas

    Optimal Mission Planning of Autonomous Mobile Agents for Applications in Microgrids, Sensor Networks, and Military Reconnaissance

    Get PDF
    As technology advances, the use of collaborative autonomous mobile systems for various applications will become evermore prevalent. One interesting application of these multi-agent systems is for autonomous mobile microgrids. These systems will play an increasingly important role in applications such as military special operations for mobile ad-hoc power infrastructures and for intelligence, surveillance, and reconnaissance missions. In performing these operations with these autonomous energy assets, there is a crucial need to optimize their functionality according to their specific application and mission. Challenges arise in determining mission characteristics such as how each resource should operate, when, where, and for how long. This thesis explores solutions in determining optimal mission plans around the applications of autonomous mobile microgrids and resource scheduling with UGVs and UAVs. Optimal network connections, energy asset locations, and cabling trajectories are determined in the mobile microgrid application. The resource scheduling applications investigate the use of a UGV to recharge wireless sensors in a wireless sensor network. Optimal recharging of mobile distributed UAVs performing reconnaissance missions is also explored. With genetic algorithm solution approaches, the results show the proposed methods can provide reasonable a-priori mission plans, considering the applied constraints and objective functions in each application. The contributions of this thesis are: (1) The development and analysis of solution methodologies and mission simulators for a-priori mission plan development and testing, for applications in organizing and scheduling power delivery with mobile energy assets. Applying these methods results in (2) the development and analysis of reasonable a-priori mission plans for autonomous mobile microgrids/assets, in various scenarios. This work could be extended to include a more diverse set of heterogeneous agents and incorporate dynamic loads to provide power to
    corecore