1,823 research outputs found

    How to shift bias: Lessons from the Baldwin effect

    Get PDF
    An inductive learning algorithm takes a set of data as input and generates a hypothesis as output. A set of data is typically consistent with an infinite number of hypotheses; therefore, there must be factors other than the data that determine the output of the learning algorithm. In machine learning, these other factors are called the bias of the learner. Classical learning algorithms have a fixed bias, implicit in their design. Recently developed learning algorithms dynamically adjust their bias as they search for a hypothesis. Algorithms that shift bias in this manner are not as well understood as classical algorithms. In this paper, we show that the Baldwin effect has implications for the design and analysis of bias shifting algorithms. The Baldwin effect was proposed in 1896, to explain how phenomena that might appear to require Lamarckian evolution (inheritance of acquired characteristics) can arise from purely Darwinian evolution. Hinton and Nowlan presented a computational model of the Baldwin effect in 1987. We explore a variation on their model, which we constructed explicitly to illustrate the lessons that the Baldwin effect has for research in bias shifting algorithms. The main lesson is that it appears that a good strategy for shift of bias in a learning algorithm is to begin with a weak bias and gradually shift to a strong bias

    Explicit Learning Curves for Transduction and Application to Clustering and Compression Algorithms

    Full text link
    Inductive learning is based on inferring a general rule from a finite data set and using it to label new data. In transduction one attempts to solve the problem of using a labeled training set to label a set of unlabeled points, which are given to the learner prior to learning. Although transduction seems at the outset to be an easier task than induction, there have not been many provably useful algorithms for transduction. Moreover, the precise relation between induction and transduction has not yet been determined. The main theoretical developments related to transduction were presented by Vapnik more than twenty years ago. One of Vapnik's basic results is a rather tight error bound for transductive classification based on an exact computation of the hypergeometric tail. While tight, this bound is given implicitly via a computational routine. Our first contribution is a somewhat looser but explicit characterization of a slightly extended PAC-Bayesian version of Vapnik's transductive bound. This characterization is obtained using concentration inequalities for the tail of sums of random variables obtained by sampling without replacement. We then derive error bounds for compression schemes such as (transductive) support vector machines and for transduction algorithms based on clustering. The main observation used for deriving these new error bounds and algorithms is that the unlabeled test points, which in the transductive setting are known in advance, can be used in order to construct useful data dependent prior distributions over the hypothesis space
    • …
    corecore