Inductive learning is based on inferring a general rule from a finite data
set and using it to label new data. In transduction one attempts to solve the
problem of using a labeled training set to label a set of unlabeled points,
which are given to the learner prior to learning. Although transduction seems
at the outset to be an easier task than induction, there have not been many
provably useful algorithms for transduction. Moreover, the precise relation
between induction and transduction has not yet been determined. The main
theoretical developments related to transduction were presented by Vapnik more
than twenty years ago. One of Vapnik's basic results is a rather tight error
bound for transductive classification based on an exact computation of the
hypergeometric tail. While tight, this bound is given implicitly via a
computational routine. Our first contribution is a somewhat looser but explicit
characterization of a slightly extended PAC-Bayesian version of Vapnik's
transductive bound. This characterization is obtained using concentration
inequalities for the tail of sums of random variables obtained by sampling
without replacement. We then derive error bounds for compression schemes such
as (transductive) support vector machines and for transduction algorithms based
on clustering. The main observation used for deriving these new error bounds
and algorithms is that the unlabeled test points, which in the transductive
setting are known in advance, can be used in order to construct useful data
dependent prior distributions over the hypothesis space