21,654 research outputs found

    Stability, observer design and control of networks using Lyapunov methods

    Get PDF
    We investigate different aspects of the analysis and control of interconnected systems. Different tools, based on Lyapunov methods, are provided to analyze such systems in view of stability, to design observers and to control systems subject to stabilization. All the different tools presented in this work can be used for many applications and extend the analysis toolbox of networks. Considering systems with inputs, the stability property input-to-state dynamical stability (ISDS) has some advantages over input-to-state stability (ISS). We introduce the ISDS property for interconnected systems and provide an ISDS small-gain theorem with a construction of an ISDS-Lyapunov function and the rate and the gains of the ISDS estimation for the whole system. This result is applied to observer design for single and interconnected systems. Observers are used in many applications where the measurement of the state is not possible or disturbed due to physical reasons or the measurement is uneconomical. By the help of error Lyapunov functions we design observers, which have a so-called quasi ISS or quasi-ISDS property to guarantee that the dynamics of the estimation error of the systems state has the ISS or ISDS property, respectively. This is applied to quantized feedback stabilization. In many applications, there occur time-delays and/or instantaneous jumps of the systems state. At first, we provide tools to check whether a network of time-delay systems has the ISS property using ISS-Lyapunov-Razumikhin functions and ISS-Lyapunov-Krasovskii functionals. Then, these approaches are also used for interconnected impulsive systems with time-delays using exponential Lyapunov-Razumikhin functions and exponential Lyapunov-Krasovskii functionals. We derive conditions to assure ISS of an impulsive network with time-delays. Controlling a system in a desired and optimal way under given constraints is a challenging task. One approach to handle such problems is model predictive control (MPC). In this thesis, we introduce the ISDS property for MPC of single and interconnected systems. We provide conditions to assure the ISDS property of systems using MPC, where the previous result of this thesis, the ISDS small-gain theorem, is applied. Furthermore, we investigate the ISS property for MPC of time-delay systems using the Lyapunov-Krasovskii approach. We prove theorems, which guarantee ISS for single and interconnected systems using MPC

    Small gain theorems for large scale systems and construction of ISS Lyapunov functions

    Full text link
    We consider interconnections of n nonlinear subsystems in the input-to-state stability (ISS) framework. For each subsystem an ISS Lyapunov function is given that treats the other subsystems as independent inputs. A gain matrix is used to encode the mutual dependencies of the systems in the network. Under a small gain assumption on the monotone operator induced by the gain matrix, a locally Lipschitz continuous ISS Lyapunov function is obtained constructively for the entire network by appropriately scaling the individual Lyapunov functions for the subsystems. The results are obtained in a general formulation of ISS, the cases of summation, maximization and separation with respect to external gains are obtained as corollaries.Comment: provisionally accepted by SIAM Journal on Control and Optimizatio

    An ISS Small-Gain Theorem for General Networks

    Full text link
    We provide a generalized version of the nonlinear small-gain theorem for the case of more than two coupled input-to-state stable (ISS) systems. For this result the interconnection gains are described in a nonlinear gain matrix and the small-gain condition requires bounds on the image of this gain matrix. The condition may be interpreted as a nonlinear generalization of the requirement that the spectral radius of the gain matrix is less than one. We give some interpretations of the condition in special cases covering two subsystems, linear gains, linear systems and an associated artificial dynamical system.Comment: 26 pages, 3 figures, submitted to Mathematics of Control, Signals, and Systems (MCSS

    Numerical Construction of LISS Lyapunov Functions under a Small Gain Condition

    Full text link
    In the stability analysis of large-scale interconnected systems it is frequently desirable to be able to determine a decay point of the gain operator, i.e., a point whose image under the monotone operator is strictly smaller than the point itself. The set of such decay points plays a crucial role in checking, in a semi-global fashion, the local input-to-state stability of an interconnected system and in the numerical construction of a LISS Lyapunov function. We provide a homotopy algorithm that computes a decay point of a monotone op- erator. For this purpose we use a fixed point algorithm and provide a function whose fixed points correspond to decay points of the monotone operator. The advantage to an earlier algorithm is demonstrated. Furthermore an example is given which shows how to analyze a given perturbed interconnected system.Comment: 30 pages, 7 figures, 4 table

    Stability of interconnected impulsive systems with and without time-delays using Lyapunov methods

    Full text link
    In this paper we consider input-to-state stability (ISS) of impulsive control systems with and without time-delays. We prove that if the time-delay system possesses an exponential Lyapunov-Razumikhin function or an exponential Lyapunov-Krasovskii functional, then the system is uniformly ISS provided that the average dwell-time condition is satisfied. Then, we consider large-scale networks of impulsive systems with and without time-delays and we prove that the whole network is uniformly ISS under a small-gain and a dwell-time condition. Moreover, these theorems provide us with tools to construct a Lyapunov function (for time-delay systems - a Lyapunov-Krasovskii functional or a Lyapunov-Razumikhin function) and the corresponding gains of the whole system, using the Lyapunov functions of the subsystems and the internal gains, which are linear and satisfy the small-gain condition. We illustrate the application of the main results on examples

    A Small-Gain Theorem with Applications to Input/Output Systems, Incremental Stability, Detectability, and Interconnections

    Full text link
    A general ISS-type small-gain result is presented. It specializes to a small-gain theorem for ISS operators, and it also recovers the classical statement for ISS systems in state-space form. In addition, we highlight applications to incrementally stable systems, detectable systems, and to interconnections of stable systems.Comment: 16 pages, no figure
    corecore