7 research outputs found

    Central Limit Theorems for Wavelet Packet Decompositions of Stationary Random Processes

    Full text link
    This paper provides central limit theorems for the wavelet packet decomposition of stationary band-limited random processes. The asymptotic analysis is performed for the sequences of the wavelet packet coefficients returned at the nodes of any given path of the MM-band wavelet packet decomposition tree. It is shown that if the input process is centred and strictly stationary, these sequences converge in distribution to white Gaussian processes when the resolution level increases, provided that the decomposition filters satisfy a suitable property of regularity. For any given path, the variance of the limit white Gaussian process directly relates to the value of the input process power spectral density at a specific frequency.Comment: Submitted to the IEEE Transactions on Signal Processing, October 200

    On the statistical decorrelation of the wavelet packet coefficients of a band-limited wide-sense stationary random process

    Get PDF
    Abstract This paper is a contribution to the analysis of the statistical correlation of the wavelet packet coefficients resulting from the decomposition of a random process, stationary in the wide-sense, whose power spectral density (PSD) is bounded with support in ½Àp; p. Consider two quadrature mirror filters (QMF) that depend on a parameter r, such that these filters tend almost everywhere to the Shannon QMF when r increases. The parameter r is called the order of the QMF under consideration. The order of the Daubechies filters (resp. the Battle-Lemarie´filters) is the number of vanishing moments of the wavelet function (resp. the spline order of the scaling function). Given any decomposition path in the wavelet packet tree, the wavelet packet coefficients are proved to decorrelate for every packet associated with a large enough resolution level, provided that the QMF order is large enough and above a value that depends on this wavelet packet. Another consequence of our derivation is that, when the coefficients associated with a given wavelet packet are approximately decorrelated, the value of the autocorrelation function of these coefficients at lag 0 is close to the value taken by the PSD of the decomposed process at a specific point. This specific point depends on the path followed in the wavelet packet tree to attain the wavelet packet under consideration. Some simulations highlight the good quality of the ''whitening'' effect that can be obtained in practical cases.

    Noise Covariance Properties in Dual-Tree Wavelet Decompositions

    Get PDF
    Dual-tree wavelet decompositions have recently gained much popularity, mainly due to their ability to provide an accurate directional analysis of images combined with a reduced redundancy. When the decomposition of a random process is performed -- which occurs in particular when an additive noise is corrupting the signal to be analyzed -- it is useful to characterize the statistical properties of the dual-tree wavelet coefficients of this process. As dual-tree decompositions constitute overcomplete frame expansions, correlation structures are introduced among the coefficients, even when a white noise is analyzed. In this paper, we show that it is possible to provide an accurate description of the covariance properties of the dual-tree coefficients of a wide-sense stationary process. The expressions of the (cross-)covariance sequences of the coefficients are derived in the one and two-dimensional cases. Asymptotic results are also provided, allowing to predict the behaviour of the second-order moments for large lag values or at coarse resolution. In addition, the cross-correlations between the primal and dual wavelets, which play a primary role in our theoretical analysis, are calculated for a number of classical wavelet families. Simulation results are finally provided to validate these results

    Some Results on the Wavelet Packet Decomposition of Nonstationary Processes

    No full text
    Wavelet/wavelet packet decomposition has become a very useful tool in describing nonstationary processes. Important examples of nonstationary processes encountered in practice are cyclostationary processes or almost-cyclostationary processes. In this paper, we study the statistical properties of the wavelet packet decomposition of a large class of nonstationary processes, including in particular cyclostationary and almost-cyclostationary processes. We first investigate in a general framework, the existence and some properties of the cumulants of wavelet packet coefficients. We then study more precisely the almost-cyclostationary case, and determine the asymptotic distributions of wavelet packet coefficients. Finally, we particularize some of our results in the cyclostationary case before providing some illustrative simulations.</p

    Some Results on the Wavelet Packet Decomposition of Nonstationary Processes

    No full text
    corecore