5,812 research outputs found

    One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

    Get PDF
    For a size parameter s: ? ? ?, the Minimum Circuit Size Problem (denoted by MCSP[s(n)]) is the problem of deciding whether the minimum circuit size of a given function f : {0,1}? ? {0,1} (represented by a string of length N : = 2?) is at most a threshold s(n). A recent line of work exhibited "hardness magnification" phenomena for MCSP: A very weak lower bound for MCSP implies a breakthrough result in complexity theory. For example, McKay, Murray, and Williams (STOC 2019) implicitly showed that, for some constant ?? > 0, if MCSP[2^{??? n}] cannot be computed by a one-tape Turing machine (with an additional one-way read-only input tape) running in time N^{1.01}, then P?NP. In this paper, we present the following new lower bounds against one-tape Turing machines and branching programs: 1) A randomized two-sided error one-tape Turing machine (with an additional one-way read-only input tape) cannot compute MCSP[2^{???n}] in time N^{1.99}, for some constant ?? > ??. 2) A non-deterministic (or parity) branching program of size o(N^{1.5}/log N) cannot compute MKTP, which is a time-bounded Kolmogorov complexity analogue of MCSP. This is shown by directly applying the Ne?iporuk method to MKTP, which previously appeared to be difficult. 3) The size of any non-deterministic, co-non-deterministic, or parity branching program computing MCSP is at least N^{1.5-o(1)}. These results are the first non-trivial lower bounds for MCSP and MKTP against one-tape Turing machines and non-deterministic branching programs, and essentially match the best-known lower bounds for any explicit functions against these computational models. The first result is based on recent constructions of pseudorandom generators for read-once oblivious branching programs (ROBPs) and combinatorial rectangles (Forbes and Kelley, FOCS 2018; Viola 2019). En route, we obtain several related results: 1) There exists a (local) hitting set generator with seed length O?(?N) secure against read-once polynomial-size non-deterministic branching programs on N-bit inputs. 2) Any read-once co-non-deterministic branching program computing MCSP must have size at least 2^??(N)

    Reactive Turing Machines

    Full text link
    We propose reactive Turing machines (RTMs), extending classical Turing machines with a process-theoretical notion of interaction, and use it to define a notion of executable transition system. We show that every computable transition system with a bounded branching degree is simulated modulo divergence-preserving branching bisimilarity by an RTM, and that every effective transition system is simulated modulo the variant of branching bisimilarity that does not require divergence preservation. We conclude from these results that the parallel composition of (communicating) RTMs can be simulated by a single RTM. We prove that there exist universal RTMs modulo branching bisimilarity, but these essentially employ divergence to be able to simulate an RTM of arbitrary branching degree. We also prove that modulo divergence-preserving branching bisimilarity there are RTMs that are universal up to their own branching degree. Finally, we establish a correspondence between executability and finite definability in a simple process calculus

    Verifying Time Complexity of Deterministic Turing Machines

    Full text link
    We show that, for all reasonable functions T(n)=o(nlogn)T(n)=o(n\log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T(n)T(n). This is a tight bound on the order of growth for the function TT because we prove that, for T(n)(n+1)T(n)\geq(n+1) and T(n)=Ω(nlogn)T(n)=\Omega(n\log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T(n)T(n). We give results also for the case of multi-tape Turing machines. We show that we can verify whether a given multi-tape Turing machine runs in time at most T(n)T(n) iff T(n0)<(n0+1)T(n_0)< (n_0+1) for some n0Nn_0\in\mathbb{N}. We prove a very general undecidability result stating that, for any class of functions F\mathcal{F} that contains arbitrary large constants, we cannot verify whether a given Turing machine runs in time T(n)T(n) for some TFT\in\mathcal{F}. In particular, we cannot verify whether a Turing machine runs in constant, polynomial or exponential time.Comment: 18 pages, 1 figur

    Strengths and Weaknesses of Quantum Computing

    Full text link
    Recently a great deal of attention has focused on quantum computation following a sequence of results suggesting that quantum computers are more powerful than classical probabilistic computers. Following Shor's result that factoring and the extraction of discrete logarithms are both solvable in quantum polynomial time, it is natural to ask whether all of NP can be efficiently solved in quantum polynomial time. In this paper, we address this question by proving that relative to an oracle chosen uniformly at random, with probability 1, the class NP cannot be solved on a quantum Turing machine in time o(2n/2)o(2^{n/2}). We also show that relative to a permutation oracle chosen uniformly at random, with probability 1, the class NPcoNPNP \cap coNP cannot be solved on a quantum Turing machine in time o(2n/3)o(2^{n/3}). The former bound is tight since recent work of Grover shows how to accept the class NP relative to any oracle on a quantum computer in time O(2n/2)O(2^{n/2}).Comment: 18 pages, latex, no figures, to appear in SIAM Journal on Computing (special issue on quantum computing
    corecore