112,048 research outputs found

    ON PROPERTIES OF PRIME IDEAL GRAPHS OF COMMUTATIVE RINGS

    Get PDF
    The prime ideal graph of  in a finite commutative ring  with unity, denoted by , is a graph with elements of  as its vertices and two elements in  are adjacent if their product is in . In this paper, we explore some interesting properties of . We determined some properties of  such as radius, diameter, degree of vertex, girth, clique number, chromatic number, independence number, and domination number. In addition to these properties, we study dimensions of prime ideal graphs, including metric dimension, local metric dimension, and partition dimension; furthermore, we examined topological indices such as atom bond connectivity index, Balaban index, Szeged index, and edge-Szeged index

    Evasiveness and the Distribution of Prime Numbers

    Get PDF
    We confirm the eventual evasiveness of several classes of monotone graph properties under widely accepted number theoretic hypotheses. In particular we show that Chowla's conjecture on Dirichlet primes implies that (a) for any graph HH, "forbidden subgraph HH" is eventually evasive and (b) all nontrivial monotone properties of graphs with n3/2ϵ\le n^{3/2-\epsilon} edges are eventually evasive. (nn is the number of vertices.) While Chowla's conjecture is not known to follow from the Extended Riemann Hypothesis (ERH, the Riemann Hypothesis for Dirichlet's LL functions), we show (b) with the bound O(n5/4ϵ)O(n^{5/4-\epsilon}) under ERH. We also prove unconditional results: (a') for any graph HH, the query complexity of "forbidden subgraph HH" is (n2)O(1)\binom{n}{2} - O(1); (b') for some constant c>0c>0, all nontrivial monotone properties of graphs with cnlogn+O(1)\le cn\log n+O(1) edges are eventually evasive. Even these weaker, unconditional results rely on deep results from number theory such as Vinogradov's theorem on the Goldbach conjecture. Our technical contribution consists in connecting the topological framework of Kahn, Saks, and Sturtevant (1984), as further developed by Chakrabarti, Khot, and Shi (2002), with a deeper analysis of the orbital structure of permutation groups and their connection to the distribution of prime numbers. Our unconditional results include stronger versions and generalizations of some result of Chakrabarti et al.Comment: 12 pages (conference version for STACS 2010
    corecore