8 research outputs found

    Stream cipher based on quasigroup string transformations in Zp∗Z_p^*

    Full text link
    In this paper we design a stream cipher that uses the algebraic structure of the multiplicative group \bbbz_p^* (where p is a big prime number used in ElGamal algorithm), by defining a quasigroup of order p−1p-1 and by doing quasigroup string transformations. The cryptographical strength of the proposed stream cipher is based on the fact that breaking it would be at least as hard as solving systems of multivariate polynomial equations modulo big prime number pp which is NP-hard problem and there are no known fast randomized or deterministic algorithms for solving it. Unlikely the speed of known ciphers that work in \bbbz_p^* for big prime numbers pp, the speed of this stream cipher both in encryption and decryption phase is comparable with the fastest symmetric-key stream ciphers.Comment: Small revisions and added reference

    Radio Resource Sharing for MTC in LTE-A: An Interference-Aware Bipartite Graph Approach

    Get PDF
    International audienceTraditional cellular networks have been considered the most promising candidates to support machine to machine (M2M) communication mainly due to their ubiquitous coverage. Optimally designed to support human to human (H2H) communication, an innovative access to radio resources is required to accommodate M2M unique features such as the massive number of machine type devices (MTDs) as well as the limited data transmission session. In this paper, we consider a simultaneous access to the spectrum in an M2M/H2H coexistence scenario. Taking the advantage of the new device to device (D2D) communication paradigm enabled in long term evolution-advanced (LTE-A), we propose to combine M2M and D2D owing to the MTD low transmit power and thus enabling efficiently the resource sharing. First, we formulate the resource sharing problem as a maximization of the sum-rate, problem for which the optimal solution has been proved to be non deterministic polynomial time hard (NP-Hard). We next model the problem as a novel interference-aware bipartite graph to overcome the computational complexity of the optimal solution. To solve this problem, we consider here a two-phase resource allocation approach. In the first phase, H2H users resource assignment is performed in a conventional way. In the second phase, we introduce two alternative algorithms, one centralized and one semi-distributed to perform M2M resource allocation. The computational complexity of both introduced algorithms whose aim is to solve the M2M resource allocation, is of polynomial complexity. Simulation results show that the semi-distributed M2M resource allocation algorithm achieves quite good performance in terms of network aggregate sum-rate with markedly lower communication overhead compared to the centralized one

    Radio Resource Allocation for Device-to-Device Underlay Communication Using Hypergraph Theory

    Full text link
    Device-to-Device (D2D) communication has been recognized as a promising technique to offload the traffic for the evolved Node B (eNB). However, the D2D transmission as an underlay causes severe interference to both the cellular and other D2D links, which imposes a great technical challenge to radio resource allocation. Conventional graph based resource allocation methods typically consider the interference between two user equipments (UEs), but they cannot model the interference from multiple UEs to completely characterize the interference. In this paper, we study channel allocation using hypergraph theory to coordinate the interference between D2D pairs and cellular UEs, where an arbitrary number of D2D pairs are allowed to share the uplink channels with the cellular UEs. Hypergraph coloring is used to model the cumulative interference from multiple D2D pairs, and thus, eliminate the mutual interference. Simulation results show that the system capacity is significantly improved using the proposed hypergraph method in comparison to the conventional graph based one.Comment: 27 pages,10 figure

    The node-deletion problem for hereditary properties is NP-complete

    Get PDF
    AbstractWe consider the family of graph problems called node-deletion problems, defined as follows; For a fixed graph property Π, what is the minimum number of nodes which must be deleted from a given graph so that the resulting subgraph satisfies Π? We show that if Π is nontrivial and hereditary on induced subgraphs, then the node-deletion problem for Π is NP-complete for both undirected and directed graphs

    Secrecy-Optimized Resource Allocation for Device-to-Device Communication Undelaying Cellular Networks

    Get PDF
    L’objectif principal de l’introduction de la communication de périphérique-à-périphérique «device-to-device» (D2D) sous-jacente aux systèmes de communication sans fil de cinquième génération (5G), est d’augmenter l’efficacité spectrale (ES). Cependant, la communication D2D sous-jacente aux réseaux cellulaires peut entraîner une dégradation des performances causée par des co-interférences de canal sévères entre les liaisons cellulaires et D2D. De plus, en raison de la complexité du contrôle et de la gestion, les connexions directes entre les appareils à proximité sont vulnérables. En conséquence, la communication D2D n’est pas robuste contre les menaces de sécurité et l’écoute clandestine. Pourtant, les co-interférences de canal peuvent être adoptées pour aider les utilisateurs cellulaires (UC) et les paires D2D afin d’empêcher l’écoute clandestine. Dans cette thèse, nous étudions différents scénarios de problèmes d’allocation de ressources en utilisant le concept de sécurité de couche physique «physical layer security» (PLS) pour la communication D2D sous-jacente aux réseaux cellulaires, tout en satisfaisant les exigences minimales de qualité de service (QoS) des liaisons cellulaires et D2D. Dans le cas où PLS est pris en compte, l’interférence peut aider à réduire l’écoute clandestine. Premièrement, nous formulons un scénario d’allocation de ressources dans lequel chaque bloc de ressources (RB) temps-fréquence de multiplexage par répartition orthogonale en fréquence (OFDM) peut être partagé par une seule CU et une paire D2D dans un réseau unicellulaire. Le problème formulé est réduit au problème de correspondance tridimensionnelle, qui est généralement NP-difficile, et la solution optimale peut être obtenue par des méthodes compliquées, telles que la recherche par force brute et/ou l’algorithme de branchement et de liaison qui ont une complexité de calcul exponentielle. Nous proposons donc une méta-heuristique basée sur l’algorithme de recherche tabou «Tabu Search» (TS) avec une complexité de calcul réduite pour trouver globalement la solution d’allocation de ressources radio quasi-optimale.----------ABSTRACT: The primary goal of introducing device-to-device (D2D) communication underlying fifthgeneration (5G) wireless communication systems is to increase spectral efficiency (ES). However, D2D communication underlying cellular networks can lead to performance degradation caused by severe co-channel interference between cellular and D2D links. In addition, due to the complexity of control and management, direct connections between nearby devices are vulnerable. Thus, D2D communication is not robust against security threats and eavesdropping. On the other hand, the co-channel interference can be adopted to help cellular users (CUs) and D2D pairs to prevent eavesdropping. In this thesis, we investigate different resource allocation problem scenarios using the physical layer security (PLS) concept for the D2D communication underlying cellular networks, while satisfying the minimum quality of service (QoS) requirements of cellular and D2D link. If the PLS is taken into account, the interference can help reduce eavesdropping. First, we formulate a resource allocation scenario in which each orthogonal frequency-division multiplexing (OFDM) time-frequency resource block (RB) can be shared by one single CU and one D2D pair in a single-cell network. The formulated problem is reduced to the threedimensional matching problem, which is generally NP-hard, and the optimal solution can be obtained through the complicated methods, such as brute-force search and/or branch-andbound algorithm that have exponential computational complexity. We, therefore, propose a meta-heuristic based on Tabu Search (TS) algorithm with a reduced computational complexity to globally find the near-optimal radio resource allocation solution
    corecore