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The Node-Deletion Problem for Hereditary Properties Is NP-Complete 
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We consider the family of graph problems called node-deletion problems, defined as 
follows: For a fixed graph property l7, what is the minimum number of nodes which 
must be deleted from a given graph so that the resulting subgraph satisfies l7? We show 
that if l7 is nontrivial and hereditary on induced subgraphs, then the node-deletion 
problem for n is NP-complete for both undirected and directed graphs. 

1. INTRODUCTION 

This paper deals with the class of graph problems defined as follows: For a fixed graph 
property n, find the minimum number of nodes (or vertices) which must be deleted 
from a given graph so that the result satisfies 17. We call this the node-deletion problem for 
l7. Our results show that if TjI is a “nontrivial” property which is “hereditary” on induced 
subgraph, then the node-deletion problem for 17 is NP-hard. Furthermore, if we add the 
condition that testing for 17 can be performed in polynomial time, then our results imply 
that the node-deletion problem for 17 is NP-complete. (See [4] for an exposition of NP- 
completeness.) 

A graph property is nontriwial if it is true for infinitely many graphs and false for 
infinitely many graphs. It is easy to see that if this condition does not hold, then the node- 
deletion problem is always polynomial. For example, if II’ is true for only finitely many 
graphs G, ,..., G, , then we can find in polynomial time the largest Gi which is contained 
in a given graph. Hence the condition that the property be nontrivial is essential to our 
results. 

A property is hereditary on induced subgraphs if, for any graph satisfying the property, 
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all vertex-induced subgraphs also satisfy the property. Examples of well-known hereditary 
properties are planar, outerplanar, bipartite, acyclic, degree-constrained, interval graph, 
comparability graph, chordal, complete, independent set, and line invertible. (See [2] or 
[6] for definitions of these terms.) Our results thus imply the NP-completeness of a large 
number of specific node-deletion problems. Some of these had previously been shown 
to be NP-complete [3, 5, 8, 91. Th e si ru ‘g ‘fi cance of the present paper lies in the fact that 
we exhibit techniques which can be used to prove the NP-completeness of an infinite 
family of problems. Note that the hereditary condition is also necessary for our results to 
hold. For example, the property biconnected is not hereditary, and the node-deletion 
problem for it is linear [14]. 

If a graph G does not satisfy some hereditary property, then any supergraph of G also 
fails to satisfy the property. We call G a forbidden s&graph for the property. Any hereditary 
property is definable by its set of forbidden subgraphs, and, conversely, any set of graphs 
is the set of forbidden subgraphs of some hereditary property. If the graphs all have edges, 
the property will be nontrivial. Our proofs rely heavily on this correspondence between 
hereditary properties and sets of graphs. 

Since the number of sets of graphs is uncountable, so is the number of hereditary 
properties. But the set of algorithms can be enumerated [7] and is therefore countable. 
It follows that not all node-deletion problem are in NP (or even recursive). For this 
reason we add the stipulation that n be a property which can be tested for in polynomial 
time. Then the node-deletion problem for 17 is in NP, and our results show that it is 
NP-complete. 

The paper is organized as follows. In Section 2 we show NP-hardness for node- 
deletion problems for properties whose forbidden subgraphs are all biconnected. In 
Section 3 we extend this to include node-deletion problems for all nontrivial hereditary 
properties on undirected graphs. Section 4 proves the same result for digraphs. 

We introduce the following notation. For any graph G and graph property l7, we let 
m(G) be the minimum number of nodes which must be deleted from G in order that 
the resulting subgraph satisfy I7. When there is no possibility of any ambiguity, we will 
drop the subscript II. 

2. PROPERTIES WHOSE FORBIDDEN SUBGRAPH~ ARE BICONNECTED 

A number of common graph properties can be defined by biconnected forbidden sub- 
graphs. Examples are planar, bipartite, and acyclic. This section treats node-deletion 
problems for such properties. 

For any N > 3, let SATN denote the satisfiability problem for sets of clauses in 
conjunctive normal form in which each clause has exactly N literals. It is known that 
SAT3 is NP-complete [5], and it is easy to show that SATN is NP-complete for N > 4 
[lo]. For any property 1T definable by biconnected forbidden subgraphs, we will show 
that the node-deletion problem for 17 is NP-complete by showing that SATN can be 
reduced to it for some N. 

Let G be a biconnected graph with N 2 3 vertices and e any edge of G. Given clauses 
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FIG. 1. The labeling of the vertices Gi . tiI , fiI are associated with x2 , S& ; ti2 , fi2 are associated 
with 2:; , g3 , etc. 

c c,, 1 ,..-, each with exactly N literals from among the set x1 ,..., x1 , pi ,..., 3, , as input 
for SATN, construct the graph r, called the r-graph for G, e, C, ,..., C, , as follows. 

Begin with G, and for each vertex vi , add a new, isolated vertex vi . This graph G 
has 2N vertices. Let G; ,.,., Gk be n disjoint copies of G’, and form Gi + *.* + Gk , 
the graph consisting of the disjoint union of the n copies. For each Gj , i = l,..., 12, label 
the 2N vertices as follows: If the jth literal of clause C, is xk , let vi be tij and vi be fij; 
if the jth literal is 9 , let vi be fij and vi be tij . Say that tij is associated with xk , fii is 
associated with ?& . A vertex labeled t will be called a t-vertex (t for true); one labeled f 
will be called an f-vertex (f for false). An example of this labeling for a particular clause 
and graph is shown in Fig. 1. 

Note that if v is any of ti, , fiz , fi3 , t, , in Fig. 1, then G; - {v} does not contain G as 
a subgraph, whereas if v is any of the isolated vertices of Gi , then Gi - {v} still contains 
G. A truth assignment for C, ,..., C, will correspond in the r-graph to removing from 
G; + ... + Gk for each pair tij , fij , the vertex which is associated with a literal assigned 
the value 1. So if x, is assigned 1 in the above example, t, would be removed from Gi , 
and if x5 is assigned 1, then fi3 would be removed. The idea is that if the truth assignment 
satisfies {C, ,..., C,}, these deletions will result in a graph that contains no subgraph 
isomorphic to G. That is, if {C, ,..., C,} is satisfiable, there will be a set of 2nN - nN = 
nN vertices in Gi + ..* + Gi whose induced subgraph does not contain G as a subgraph. 
Unfortunately, the converse of this statement is not true, for Gi + ... + GL will always 
have an nN-vertex subgraph not containing G; for example, the subgraph induced by 
the nN isolated vertices. The remaining part of the construction of r is designed to 
ensure that if r has a subgraph of a certain size not containing G, then this subgraph will 
imply a valid truth assignment satisfying {C, ,..., C,). 

The 2nN vertices of Gi + a*. + Gh can be partitioned into I sets Vi ,..., I’r , where I’, 
consists of vertices associated with xk or zk . Let the number of vertices in V, be 2p,, 
so that either xk or 9 occurs p, times in C, ,..., C, . Then V, contains pk2 distinct pairs 
of the form tij , frs. To each such pair, attach a copy of G by identifying the two vertices 
with the endpoints of e. This adds to the graph M = (N - 2) &ks1pk2 vertices which 
will be denoted U, ,..., Q, and referred to as u-vertices. The resulting graph r is the 
r-graph for G, e, C, ,..., C, . A partial construction of a r-graph is depicted in Fig. 2. 

It is clear that I’ can be constructed in time polynomial in n. and N. The following 
lemmas give the properties of r that allow SATN to be reduced to a node-deletion 
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FIG. 2. Partial construction of the r-graph for G, e, Cl, C, , C, . The graph Gi -f Gi $- Gj 
has been formed, and the dotted edges are the attached copies of G for the set VI of vertices as- 
sociated with x1, f, , 

problem on l7 For a set S of vertices in a graph G, let G 1 S be the subgraph induced 
by S. 

LEMMA 1. If{C, ,..., C,} is satisjuble, then there is a subset V’ _C V(F) of size 1 V’ j = 
nN + M such that r 1 V’ has no biconnected component with more than N - 1 vertices. 

Proof. Let +: {x1 ,..., x] + (0, 1) be a truth assignment which satisfies C, ,..., C, . 
For each set of vertices V, , let 

That is, W, is the subset of Vk consisting of vertices associated with literals assigned the 
value 1. Let V’ = V(r) - lJ W, . Let r’ = I’ 1 V’. In other words, delete all vertices 
associated with literals assigned the value 1. 

For a pair t, , fTs belonging to the same V, , only one is in V’. Call this vertex V. If u 
is any u-vertex in the copy of G attached to tij , jr6 , then any path from u to a vertex not 
in this attached copy must contain V. Therefore o is a cutpoint of r’; its removal dis- 
connects the N - 2 vertices in the attached copy containing u from the rest of l7 It 
follows that neither U, nor any of z+ ,..., u,+, , is in a biconnected component of r’ with 
more than N - 1 vertices. Among the remaining vertices rii , fij , all edges which resulted 
from the attached copies of G are not present in r’, since one of the end points of each 
such edge has been deleted. The only remaining edges to consider are those from the 
original graph Gi + ..* + Gk . Since 4 satisfies C, ,..., C,, , at least one vertex from each 
of the n copies of G in this graph has been deleted, as argued previously, so none of the 
t- orf-vertices of r’ is in a biconnected component with more than N - 1 vertices. Thus 
no vertex of r’ is in a biconnected component with more than N - 1 vertices, so the 
lemma is proved. # 
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LEMMA 2. Sqpue r has a set V’ C V(F) f o size 1 V’ 1 = nN + M such that G is 
not a subgraph of r 1 V’. Then {C, ,..., C,} is satisfiable. 

Proof. Let r’ = r 1 I”. Since G is not a subgraph of r’, at least one vertex from each 
of the original n copies of G in Gr + 1.. + G, must have been deleted; that is, a vertex 
corresponding to at least one literal in each clause has been deleted. The claim is that 
for each k = 1 ,..., 1, either V’ contains only t-vertices of V, , or it contains only f- 
vertices. If this claim is true, then the deleted vertices will determine a truth assignment + 
defined by 

K%) = 17 if V’ n V, contains only f-vertices 
= 0, if V’ n V, contains only t-vertices. 

and this truth assignment will satisfy C, ,..., C, . 
To see that the above claim holds, note first that it can be assumed without loss of 

generality that all of or ,..., uM are in V’. For suppose uk is not in V’. ulc is in a copy of G 
attached to some pair tij , frS . If one of these is in V’, remove it from I” and add uk . If 
neither of these is in I”, add uk and remove any t- or f-vertex from V’. Call the new set 
V”, and consider P = r 1 V”. If r” contains G as a subgraph, then uk would have to be 
in this subgraph. But by construction at least one of the vertices tij , f,, connecting uk 
to the rest of the graph has been deleted, so as argued in the proof of Lemma 1, uk is in 
a biconnected component of at most N - 1 vertices. Thus G is not a subgraph of r’. 
Continuing this process verifies the assumption. 

Now suppose for some k, V’ n V, contains both a t-vertex tij and an f-vertex f,.* . 
Then tii and f,.* , plus the u-vertices in the copy of G attached to them could constitute 
a subgraph isomorphic to G, a contradiction. Therefore, for each k, I” n V, contains 
only t-vertices or only f-vertices, proving the claim and the lemma. l 

These facts about the relationship between SATN and the r-graph lead directly to 
the following result. 

THEOREM 3. Let GI , G, ,... be a collection of biconnected graphs such that / V(GJl > 
1 V(G)I = N 3 3 f or all i. Let 17 be the property having GI ,... as forbidden subgraphs. 
Then the node-deletion problem for I7 is NP-complete. 

Proof. Let e E E(G,) be arbitrary. Given N-clauses, C, ,..., C, over the literals 
- 

Xl ,***, xz , Xl ,**a, & , construct the r-graph for Gr , e, C, ,..., C, . As before, let p, be the 
number of occurrences of either xk or Sk in C, ,..., C, , let M = (N - 2) &k(lplc2. 
We show that (C, ,..., C,} is satisfiable if and only if m(r) < nN. 

Suppose {Cr ,..., C,> is satisfiable. By Lemma 1, there is a subset v’ C V(r) of size 
1 V’ 1 = nM + M, obtainable by deleting from r those t- and f-vertices corresponding 
to literals assigned the value 1, such that r / V’ has no biconnected component with more 
than N - 1 vertices. This implies that none of Gr , G2 ,... can be a subgraph of r I V’. 
Therefore y,(r) < nN. 

Conversely, suppose m(r) < nN. Then there is a set V’ of size ) V’ 1 = nM + M 
such that none of G1, G, ,... is a subgraph of r 1 V’. In particular, Gr is not a subgraph 
of v’. Then by Lemma 2, {C, ,..,, C,} is satisfiable. a 
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3. THE GENERAL NODE-DELETION PROBLEM FOR UNDIRECTED GRAPHS 

By %(G) we denote the node-cover number of G, i.e., %(G) = m(G), with r = 
“independent set of nodes.” 

THEOREM 4. The node-deletion problem for nontrivial graph-properties that are heredi- 
tary on induced subgraphs is NP-complete. 

Proof. For all m, n there is a number r(m, n) (the so-called Ramsey number), such 
that every graph with no fewer than r(m, n) nodes contains either a clique of m nodes 
(denoted K,,J or an independent set of n nodes (denoted K,J [13]. Let n be any graph- 
property satisfying the conditions of the theorem. We claim that either all cliques or all 
independent sets of nodes (or both) satisfy 17. Suppose, to the contrary, that there are 
m, n such that K, and K% do not satisfy U. Since n is a nontrivial property, there is a 
graph satisfying II, with more than r(m, n) nodes, and since I7 is hereditary on induced 
subgraphs either K, or & has no satisfy 17. Define a complementary property f4 as 
follows: A graph G satisfies fs iff its complement G satisfies 17. Clearly 14 satisfies also 
the assumptions of the theorem (since the complement of a subgraph is a subgraph of 
the complement), and the two node-deletion problems are equivalent (if the input 
domain of graphs is unrestricted, or at least closed under complementation). 

Suppose from now on without loss of generality that all independent sets of nodes 
satisfy 17, otherwise consider the equivalent problem for 17. 

Let G be a graph with connected components Gr , G, ,..., G, . For each Gi take a 
curpoint ci and sort the components of Gi relative to ci according to their size. This gives 
a sequence ai & (nil, nia ,..., nij.), with n,, 3 a.0 > niji, and assume that ci is the 
cutpoint of Gi that gives the lexicographically smallest such CQ . (If Gi is biconnected, 
then ci is any node of it, and 0~~ = (n,), where ni = 1 Gi I.) Sort the sequences of oli’s 
according to the lexicographic ordering and let j3o = ((or, ol, ,..., at), where a1 tr. 01:, ar. 

a, *** ar. cit. 
The sequences of /3o induce a total ordering R among the graphs. (We may, however, 

have flG = & for two nonisomorphic graphs G and H.) Take J to be a least graph in 
this ordering that cannot be repeated arbitrarily many times without violating n, i.e., 
there exists a number K > I, such that k independent copies of J (without any inter- 
connecting edges) violate lir, k-l independent copies of J satisfy II, and any number of 
independent copies of every H with &, <* /?, satisfies 17. (For example, if I7 = complete 
p-partite graph, then J consists of a single edge and k = 2.) By nontriviality of 17, there 
exists such a graph J, and furthermore, since all independent sets of nodes satisfy l7, J 
has at least one component of size no less than 2. 

Let Jl ,..., Jt be the components of J sorted according to their oli’s, c, the cutpoint 
of Jl that gave aI, J,, the largest component of J1 relative to cr , Ji and J’ the graphs 
obtained from J1 and J, respectively, by deleting all nodes of JO except c1 , and d any 
node of JO other than ci . (There exists such a node d since Jl , and consequently JO , too, 
has at least two nodes.) 

Now, given a graph G, input to the node cover problem, let G* consist of nk inde- 
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FIG. 4a. A graph J. 

FIG. 4b. The corresponding graph J*. 

pendent copies of G, where n is the size of G. For each node u of G* create a copy of J 
and attach it to u by identifying cr with u. Replace every edge (II, w) of G* by a copy of JO , 
attached to u and w by its nodes ci and d. (See Fig. 3.) (It does not matter how we identify 
the nodes c, , d with the nodes u and w.) Let G’ be the resulting graph. We will show that 
or,(G) < I - y(G’) < nkl. 

(1) Let V be a node cover for G, / I’ 1 < 1. Delete I’ from each copy of G. Every 
connected component of the resulting subgraph of G’ is either (a) a component Ji of J 
other than Ji , or (b) a graph formed by taking one copy of Ji and several copies of J,, , 
deleting either c, or d from each copy of Jo and attaching it by the other node (d or cr) 
to node ci of the copy of Ji (see Fig. 4 for an example), or (c) Jl - J,, (with c1 deleted), 
or (4 Jo - ~1, d (or the connected components of them, in case that the corresponding 
deletions have disconnected them. However, this does not affect our arguments, since as 
it will become obvious in a minute, the worst-case is when they are all connected.). 
Thus the remaining graph can be regarded as a subgraph of repetitions of the following 
graph J*: J* has t + s - 1 components, ifs is the number of graphs of the form (b) for 
the possible choices of the node (ci or d) deleted from each copy of J,,: these are Jz , J3,..., Jt 
and the s graphs Jt, i = l,..., s of the form (b). For example, if J is the graph of Fig. 4a, 
and the maximum degree of G is 3, then J* is as shown in Fig. 4b. 
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For all i, the components of fi relative to c, are (a) those of jr except Jo and (b) j,, 
with one of the nodes c, , d deleted. Since each component of the second kind has size 
less than 1 Jo 1, the cutpoint c, gives an a-sequence for $ which is lexicographically less 
than that of Jr , and consequently tiJ; <L aJ1 , for all i. 

ThereforepJ,, <s pJ. (In our example /3J = ((5, 3), (4,2), (4)) and/?,,, = ((4,4,4,3), 
<4,4,4, 3), <4,4,4,3), <4,4,4, 3), (4, 2), <4)).) 

By our choice of J, any number of independent copies of J* satisfies Ii”, and by heredi- 
tariness the remaining graph does so too. Therefore, r(G) < nkl. 

(2) Suppose that as(G) > I + 1, and let V be a solution to the node-deletion problem. 
Let m be the number of copies of G, from which G’ - V contains J as an induced sub- 
graph. Since k independent copies of J violate 17 and since 17 is hereditary on induced 
subgraphs, m < k. That is, from at least (n - l)k + 1 copies of G, G’ - V does not 
contain J as an induced subgraph. Let Gi be such a copy of G and define Vi = {V E Ni 1 V 
contains a node from the copy of J’ attached to cu (possibly v itself) or a node from the 
copy of JO that replaced an edge (v, u) with v < u (the ordering of nodes is arbitrary)}. 
Clearly 1 Vi 1 < / V n Ni 1. Suppose that there is an edge (v, U) of Gi such that v, u $ Vi . 
Then V does not contain any node from the copies of y attached to v and u, or from the 
copy of JO that replaced (v, u) (since otherwise the smaller of a, II would belong to Vi). 
Consequently (see Fig. 3) Gi - [V n NJ contains J as an induced subgraph (regardless 
of how the nodes c1 and d were identified to v and u). Therefore Vi is a node cover for G. 
Thus V must contain at least 1 + 1 nodes from each of (n - l)k + 1 copies of G, i.e., 
1 V I > [(n - l)k + l](Z + 1) = nkE + 1 + 2 + k(n - 1 - Z) 3 r(G) > nkl, since 
n>Z+l. 1 

COROLLARY 5. The node-deletion problem restricted to planar graphs for graph-properties 
that are hereditary on induced subgraphs and nontrivial on planar graphs is NP-complete. 

Proof. For every n, there is an r(n) (may take, for example, r(n) = 4n), such that all 
planar graphs with r(n) or more nodes contain an independent set of n nodes. Since Z7 
is nontrivial on planar graphs, all independent sets of nodes satisfy Z7. The node-cover 
problem restricted to planar graphs is NP-complete [5]. Now note that if the original 
graph G and the graph J defined in the proof of Theorem 4 are planar, and in addition 
the two attachment points c, , d of J,, lie on a common face in an embedding of it on the 
plane, then the resulting graph G’ is also planar. Since 17 is nontrivial on planar graphs, 
we can carry through the proof of Theorem 4 and find such a planar graph J. Moreover 
we can choose node d to lie on a common face with cr . # 

COROLLARY 6. The node-deletion ZI problem for the folIowing properties 17 is NP- 
complete: 17 = (1) planar, (2) outerplanar, (3) line-graph, (4) chordal, (5) interval, (6) 
without cycZes of specified length I, (7) without cycZes of length < 1, (8) degree-constrained 
with maximum degree t 2 1, (9) acyclic (forest), (10) bipartite, (11) comparability graph, 
(12) complete bipartite. 

Furthermore, the restriction to planar graphs for properties (2~(12) is also NP- 
complete. 
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4. THE NODE-DELETION PROBLEM FOR DIGRAPHS 

Regarding now digraph properties, note that the first argument used in the proof of 
Theorem 4 does not hold in the case of digraphs, i.e., it may be the case that neither l7 
nor n is satisfied by an independent set of nodes. 

THEOREM 7. The node-deletion problem for nontrivial digraph-properties that are 
hereditary on induced subgraphs is NP-complete. 

Proof. Recall Ramsey’s (generalized) theorem [13]: Let p, ,..., p, , t be any integers 
with t 2 1; p, ,..., p, > t, and suppose that for Avery set S with n elements, the family 
of all subsets of S containing exactly t elements is partitioned into m disjoint families 
2 :;k; Then there is a number r(p, ,p, ,..., p, , t), such that for every set S with 

, p, , t) elements, there exist an i, 1 < i < m, and a subset A, of S with p, 
el&ents :;;‘of whose t-subsets are in the family fi . 

If D = (N, E) is a digraph with N = {ul, u2 ,..., ~1,) partition the subsets of N with 
two elements in 4 classes, as follows: 

From Ramsey’s theorem we conclude, that for every p, , p, , p, , p, , there is a number 
r(p, , p, , p, , pJ, such that all digraphs D with no fewer than r(p, , p, , p, , p4) nodes 
contain either an independent set of p, nodes, or a complete symmetric (henceforth 
abbreviated as cs.) digraph on p, nodes (see Fig. .5a), or a complete antisymmetric 
transitive (abbreviated as c.a.t.) digraph on min(p, , p4) nodes (i.e., a digraph D’ = 
(N’, E’) whose nodes can be ordered in such a way that E’ = {(u, w) 1 u < o; u, er E N’}- 
see Fig. 5b; note also that both families f3 and f4 give such a digraph). 

Since Xl is nontrivial and hereditary on induced subgraphs, it is satisfied either (i) by 
all independent sets of nodes, or (ii) by all C.S. digraphs, or (iii) by all c.a.t. &graphs. 
The proof of Theorem 4 works for cases (i) and (ii) (in case (ii) the construction is carried 
out for n). It remains, therefore, to show the result for case (iii). 

@ le4 
5 

(a) tbl 

FIG. 5. Complete symmetric (antisymmetric transitive) digraph of size 5. 

571/20/3-8 
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Let s be the largest number such that s independent c.a.t. digraphs of any size satisfy II, 
i.e., there exist numbers kI , k, ,..., k,+r such that s + 1 independent c.a.t. digraphs of 
size kr ,..., k,, violate 17. (There exists such a number s if 17 is not satisfied by all in- 
dependent sets of nodes, and s 2 1.) Since I7 is hereditary on induced subgraphs there 
exists a number k such that s + 1 independent c.a.t. digraphs of size k violate II. (We 
can take, for example, k = max[k, , k, ,..., ky+l].) 

Given a graph G = (N, E), input to the node-cover problem, with N = {ur ,..., q,}, 
E = {e, ,..., e,}, let Y = m(k - l)n. Form a digraph D’ = (N’, E’) as follows: N’ = 
{zl~~~1~i~n,1~j~~}U{ei~~~1~i~:,1~j~r,1~k~s-l}(ifs=1 
there are no eiik nodes) and E’ = {(uij , UJ / j < h, or ( j = h and i < g); (ui , u,) $ E} u 

&GI, , et,d 1.1’ < g or (j = g and i < f)b 
Note that D’ is formed by r copies of G, with every edge ef = (ui , uj) replaced by 

s + 1 independent nodes: {uis , ui,> u {efsh 1 1 < k < s - l> and the addition of some 
interconnecting edges. 

We claim that y(D’) < rl c> or,(G) < 1. 

(1) Let V be a node cover for G and I/’ the set of the r copies of V. D’ - V 
consists of s independent complete antisymmetric transitive digraphs. The s - 1 of them 
have node set Nh = {eijh 1 1 < i < m, 1 < j < r} and the sth has node set N, = 
{uii 1 1 ,< i < n, 1 < j < r, ui $ V}. Since V is a node cover, no two nodes of N, are 
copies of adjacent nodes of G and therefore (N,Y) has the above-stated form. Thus, 
a,,(G) < 1 =s y(D’) < rl. 

(2) Suppose that q,(G) 3 I + 1, and let I/ be a solution to the node-deletion 
problem. For an edge e, = (ui , r+) of G, let Kf = {g 1 uig , ujg , efsl ,..., e,,,,-, 6 V}. 
The nodes that replaced edge e, in the copies of G with index in K, , form s + 1 inde- 
pendent complete antisymmetric transitive digraphs of size I Kf /. By our choice of s 
and k and since II is herditary on induced subgraphs, we must have / Kf 1 3 k - 1, if 
D’ - V is to satisfy Il. Therefore from at least r - m . (k - 1) = (n - 1) m(k - 1) 
copies of G, there is at least one of the s + 1 nodes that replaced each edge of G deleted. 
Arguing as in the proof of Theorem 4, V must contain at least I + 1 nodes from each of 
these copies, i.e., I V / 3 (rr - 1) m(k - 1) . (I + 1) = m(k - l)[nZ + n - (I + l)] > 
y(G)>rZ,sincen>Z+l. 1 

The proof of Corollary 5 is valid for digraph properties, too. 

COROLLARY 8. The node-debtion problem restricted to acyclic digraphs for digraph- 
properties that are hereditary on induced subgraphs and nontrivial on acyclic digraphs is 
NP-complete. 

Proof. Since Ii’ is nontrivial on acyclic digraphs we have to consider only cases (i) and 
(iii). For case (iii) the digraph D’ constructed in the proof of Theorem 7 is clearly acyclic. 
For case (i), if in the construction of the proof of Theorem 4, J is acyclic and in the 
substitution of every edge (u, v), with u < v, by J,, , c, is identified with u and d with v, 
the digraph G’ constructed there is also acyclic. (Recall that as we mentioned there, the 
way that the nodes c1 and d of JO are identified with the endpoints of the edge is irrevelent.) 
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Since 17 is nontrivial on acyclic digraphs J can’be chosen as the R-least acyclic digraph 
satisfying the conditions stated in the proof of Theorem 4. 1 

COROLLARY 9. The node-deletion problem for the following digraph-properties 17 is 
NP-complete: Ii’ = (1) acyclic (feedback-node set), (2) tram&e, (3) symmetric, (4) anti- 
symmetric, (5) line-digraph, (6) with maximum outdegree Y, (7) with maximum indegree r, 
(8) without cycles of length 1, (9) without cycles of length <I. 

Furthermore, the restriction of all problems to planar digraphs, and the restriction of 
problems 2, 3, 5, 6, 7 to acyclic digraphs is also NP-complete. 

5. CONCLUSIONS 

In this paper we saw how a set of similar problems-the node-deletion problems- 
can be attacked in a systematic way to prove the NP-completeness of all the members 
of the set. It would be interesting to find other classes of problems for which a similar 
result holds. In particular it would be nice if the same kind of techniques could be applied 
to the edge-deletion problems (of course for an appropriately restricted class of proper- 
ties). Unfortunately we suspect that this is not the case-known reductions for certain 
properties do not seem to fall into a pattern [15]. A class of problems which seems more 
likely to be amenable to such a treatment is the class of polynomial and integer divisibility 
problems [l 1, 121, where most of the NP-completeness proofs employ similar reductions. 

Regarding the class of node-deletion problems, two questions suggest themselves: 
(1) How much can we expand the class of properties for which the problem remains NP- 
complete, (2) the reduction schemes we described in Sections 3 and 4 show that the node- 
deletion problem (without the connectivity requirement) has at least as rich a structure 
(in the combinatorial sense-see also [l]) as the node cover problem. It is an immediate 
corollary of the proofs that any +approximate algorithm for any of the node-deletion 
problems could be used to derive an c-approximate algorithm for the node-cover problem. 
What can we say in the other direction, and what are the interrelationships among the 
various problems in the class with respect to their combinatorial structure ? This is very 
interesting, in view of the fact that there is, for example, no known approximation 
algorithm with bounded worst-case ratio for the feedback-node set (or any other problem 
of the class), whereas the node cover problem can be easily approximated within ratio 2, 
but also because it would shed more light into the nature of NP-complete problems from 
the combinatorial point of view and into their behavior with respect to approximation 
algorithms. 

Note. The paper reports on work done independently by the two authors. The proof 
given in Section 2, and various extensions to other hereditary properties, was discovered 
by the first author [lo]. The proof of NP-completeness of the general node-deletion 
problem for both undirected and directed graphs was found by the second author [15]. 



230 LEWIS AND YANNAKAKIS 

ACKNOWLEDGMENTS 

We wish to thank J. D. Ullman and David Dobkin for generous encouragement and support. 

REFERENCES 

I. G. AUSIELLO, A. D’ATRI, AND M. PROTASI, On the structure of combinatorial problems and 
structure preserving reductions, in “Proceedings, Fourth Colloquium on Automata, Languages, 
and Programming,” pp. 45-57, Lecture Notes in Computer Science No. 52, Springer-Verlag, 
Berlin/New York, 1977. 

2. C. BERGE, “Graphs and Hypergraphs,” North-Holland, Amsterdam, 1973. 
3. S. A. COOK, The complexity of theorem-proving procedures, in “Proceedings, Third Annual 

ACM Symposium on Theory of Computing, 1971,” pp. 151-158. 
4. M. R. GAREY ANLI D. S. JOHNSON, “Computers and Intractability: A Guide to the Theory of 

NP-Completeness,” Freeman, San Francisco, 1978. 
5. M. R. GAREY, D. S. JOHNSON, AND L. STOCKMEYER, Some simplified NP-complete graph 

problems, Theor. Cot@. Sci. I (1976), 237-267. 
6. F. HARARY, “Graph Theory,” Addison-Wesley, Reading, Mass., 1970. 
7. J. HOPCROFT AND J. D. ULLMAN, “Formal Languages and Their Relation to Automata,” 

Addison-Wesley, Reading, Mass., 1969. 
8. R. M. KARP, in “Reducibility among Combinatorial Problems” (R. E. Miller and J. W. 

Thatcher, Eds.), pp. 85-103, Plenum, New York, 1972. 
9. M. S. KBHNAMOORTHY AND N. DEO, “Node-Deletion NP-Complete Problems,” Report, 

Computer Science Program, Indian Institute of Technology, 1977. 
10. J. M. LEWIS, “On the Complexity of the Maximum Subgraph Problem,” Ph. D. thesis, Yale 

University, 1978. 
11. D. PLAISTED, Some polynomial and integer divisibility problems are NP-hard, in “Proceedings, 

17th Annual IEEE Symposium on Foundations of Computer Science, 1976,” pp. 264-267. 
12. D. PLAISTED, New NP-hard and NP-complete polynomial and integer divisibility problems, in 

“Proceedings, 18th Annual IEEE Symposium on Foundations of Computer Science, 1977, 
pp. 241-253. 

13. F. P. RAMSEY, On a problem of formal logic, Proc. London Math. SOL, 2nd Ser. 30 (1930), 
264-286. 

14. R. E. TARJAN, Depth-first-search and linear graph algorithms, SIAM J. Cornput. 1 (1972), 
146-160. 

15. M. YANNAKAKIS, “Edge-Deletion Problems,” TR 249, Computer Science Lab., Princeton 
University, 1978. 


