63 research outputs found

    Survey on Lightweight Primitives and Protocols for RFID in Wireless Sensor Networks

    Get PDF
    The use of radio frequency identification (RFID) technologies is becoming widespread in all kind of wireless network-based applications. As expected, applications based on sensor networks, ad-hoc or mobile ad hoc networks (MANETs) can be highly benefited from the adoption of RFID solutions. There is a strong need to employ lightweight cryptographic primitives for many security applications because of the tight cost and constrained resource requirement of sensor based networks. This paper mainly focuses on the security analysis of lightweight protocols and algorithms proposed for the security of RFID systems. A large number of research solutions have been proposed to implement lightweight cryptographic primitives and protocols in sensor and RFID integration based resource constraint networks. In this work, an overview of the currently discussed lightweight primitives and their attributes has been done. These primitives and protocols have been compared based on gate equivalents (GEs), power, technology, strengths, weaknesses and attacks. Further, an integration of primitives and protocols is compared with the possibilities of their applications in practical scenarios

    Improved Biclique Cryptanalysis of the Lightweight Block Cipher Piccolo

    Get PDF
    Biclique cryptanalysis is a typical attack through finding a biclique which is a type of bipartite diagram to reduce the computational complexity. By investigating the subkey distribution and the encryption structure, we find out a weakness in the key schedule of Piccolo-80. A 6-round biclique is constructed for Piccolo-80 and a 7-round biclique for Piccolo-128. Then a full round biclique cryptanalysis of Piccolo is presented. The results of the attacks are with data complexity of 240 and 224 chosen ciphertexts and with computational complexity of 279.22 and 2127.14, respectively. They are superior to other known results of biclique cryptanalytic on Piccolo

    Cryptanalysis of Block Ciphers with New Design Strategies

    Get PDF
    Block ciphers are among the mostly widely used symmetric-key cryptographic primitives, which are fundamental building blocks in cryptographic/security systems. Most of the public-key primitives are based on hard mathematical problems such as the integer factorization in the RSA algorithm and discrete logarithm problem in the DiffieHellman. Therefore, their security are mathematically proven. In contrast, symmetric-key primitives are usually not constructed based on well-defined hard mathematical problems. Hence, in order to get some assurance in their claimed security properties, they must be studied against different types of cryptanalytic techniques. Our research is dedicated to the cryptanalysis of block ciphers. In particular, throughout this thesis, we investigate the security of some block ciphers constructed with new design strategies. These new strategies include (i) employing simple round function, and modest key schedule, (ii) using another input called tweak rather than the usual two inputs of the block ciphers, the plaintext and the key, to instantiate different permutations for the same key. This type of block ciphers is called a tweakable block cipher, (iii) employing linear and non-linear components that are energy efficient to provide low energy consumption block ciphers, (iv) employing optimal diffusion linear transformation layer while following the AES-based construction to provide faster diffusion rate, and (v) using rather weak but larger S-boxes in addition to simple linear transformation layers to provide provable security of ARX-based block ciphers against single characteristic differential and linear cryptanalysis. The results presented in this thesis can be summarized as follows: Initially, we analyze the security of two lightweight block ciphers, namely, Khudra and Piccolo against Meet-in-the-Middle (MitM) attack based on the Demirci and Selcuk approach exploiting the simple design of the key schedule and round function. Next, we investigate the security of two tweakable block ciphers, namely, Kiasu-BC and SKINNY. According to the designers, the best attack on Kiasu-BC covers 7 rounds. However, we exploited the tweak to present 8-round attack using MitM with efficient enumeration cryptanalysis. Then, we improve the previous results of the impossible differential cryptanalysis on SKINNY exploiting the tweakey schedule and linear transformation layer. Afterwards, we study the security of new low energy consumption block cipher, namely, Midori128 where we present the longest impossible differential distinguishers that cover complete 7 rounds. Then, we utilized 4 of these distinguishers to launch key recovery attack against 11 rounds of Midori128 to improve the previous results on this cipher using the impossible differential cryptanalysis. Then, using the truncated differential cryptanalysis, we are able to attack 13 rounds of Midori128 utilizing a 10-round differential distinguisher. We also analyze Kuznyechik, the standard Russian federation block cipher, against MitM with efficient enumeration cryptanalysis where we improve the previous results on Kuznyechik, using MitM attack with efficient enumeration, by presenting 6-round attack. Unlike the previous attack, our attack exploits the exact values of the coefficients of the MDS transformation that is used in the cipher. Finally, we present key recovery attacks using the multidimensional zero-correlation cryptanalysis against SPARX-128, which follows the long trail design strategy, to provide provable security of ARX-based block ciphers against single characteristic differential and linear cryptanalysis

    Lightweight Cryptography for Passive RFID Tags

    Get PDF

    Design and analysis of cryptographic algorithms

    Get PDF

    Design and Analysis of Security Schemes for Low-cost RFID Systems

    Get PDF
    With the remarkable progress in microelectronics and low-power semiconductor technologies, Radio Frequency IDentification technology (RFID) has moved from obscurity into mainstream applications, which essentially provides an indispensable foundation to realize ubiquitous computing and machine perception. However, the catching and exclusive characteristics of RFID systems introduce growing security and privacy concerns. To address these issues are particularly challenging for low-cost RFID systems, where tags are extremely constrained in resources, power and cost. The primary reasons are: (1) the security requirements of low-cost RFID systems are even more rigorous due to large operation range and mass deployment; and (2) the passive tags' modest capabilities and the necessity to keep their prices low present a novel problem that goes beyond the well-studied problems of traditional cryptography. This thesis presents our research results on the design and the analysis of security schemes for low-cost RFID systems. Motivated by the recent attention on exploiting physical layer resources in the design of security schemes, we investigate how to solve the eavesdropping, modification and one particular type of relay attacks toward the tag-to-reader communication in passive RFID systems without requiring lightweight ciphers. To this end, we propose a novel physical layer scheme, called Backscatter modulation- and Uncoordinated frequency hopping-assisted Physical Layer Enhancement (BUPLE). The idea behind it is to use the amplitude of the carrier to transmit messages as normal, while to utilize its periodically varied frequency to hide the transmission from the eavesdropper/relayer and to exploit a random sequence modulated to the carrier's phase to defeat malicious modifications. We further improve its eavesdropping resistance through the coding in the physical layer, since BUPLE ensures that the tag-to-eavesdropper channel is strictly noisier than the tag-to-reader channel. Three practical Wiretap Channel Codes (WCCs) for passive tags are then proposed: two of them are constructed from linear error correcting codes, and the other one is constructed from a resilient vector Boolean function. The security and usability of BUPLE in conjunction with WCCs are further confirmed by our proof-of-concept implementation and testing. Eavesdropping the communication between a legitimate reader and a victim tag to obtain raw data is a basic tool for the adversary. However, given the fundamentality of eavesdropping attacks, there are limited prior work investigating its intension and extension for passive RFID systems. To this end, we firstly identified a brand-new attack, working at physical layer, against backscattered RFID communications, called unidirectional active eavesdropping, which defeats the customary impression that eavesdropping is a ``passive" attack. To launch this attack, the adversary transmits an un-modulated carrier (called blank carrier) at a certain frequency while a valid reader and a tag interacts at another frequency channel. Once the tag modulates the amplitude of reader's signal, it causes fluctuations on the blank carrier as well. By carefully examining the amplitude of the backscattered versions of the blank carrier and the reader's carrier, the adversary could intercept the ongoing reader-tag communication with either significantly lower bit error rate or from a significantly greater distance away. Our concept is demonstrated and empirically analyzed towards a popular low-cost RFID system, i.e., EPC Gen2. Although active eavesdropping in general is not trivial to be prohibited, for a particular type of active eavesdropper, namely a greedy proactive eavesdropper, we propose a simple countermeasure without introducing extra cost to current RFID systems. The needs of cryptographic primitives on constraint devices keep increasing with the growing pervasiveness of these devices. One recent design of the lightweight block cipher is Hummingbird-2. We study its cryptographic strength under a novel technique we developed, called Differential Sequence Attack (DSA), and present the first cryptanalytic result on this cipher. In particular, our full attack can be divided into two phases: preparation phase and key recovery phase. During the key recovery phase, we exploit the fact that the differential sequence for the last round of Hummingbird-2 can be retrieved by querying the full cipher, due to which, the search space of the secret key can be significantly reduced. Thus, by attacking the encryption (decryption resp.) of Hummingbird-2, our algorithm recovers 36-bit (another 28-bit resp.) out of 128-bit key with 2682^{68} (2602^{60} resp.) time complexity if particular differential conditions of the internal states and of the keys at one round can be imposed. Additionally, the rest 64-bit of the key can be exhaustively searched and the overall time complexity is dominated by 2682^{68}. During the preparation phase, by investing 2812^{81} effort in time, the adversary is able to create the differential conditions required in the key recovery phase with at least 0.5 probability. As an additional effort, we examine the cryptanalytic strength of another lightweight candidate known as A2U2, which is the most lightweight cryptographic primitive proposed so far for low-cost tags. Our chosen-plaintext-attack fully breaks this cipher by recovering its secret key with only querying the encryption twice on the victim tag and solving 32 sparse systems of linear equations (where each system has 56 unknowns and around 28 unknowns can be directly obtained without computation) in the worst case, which takes around 0.16 second on a Thinkpad T410 laptop

    SIMON and SPECK: Block Ciphers for the Internet of Things

    Get PDF
    The U.S. National Security Agency (NSA) developed the SIMON and SPECK families of lightweight block ciphers as an aid for securing applications in very constrained environments where AES may not be suitable. This paper summarizes the algorithms, their design rationale, along with current cryptanalysis and implementation results
    corecore