
Cryptanalysis of Block Ciphers with New Design

Strategies

Mohamed Tolba

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy (Information Systems Engineering) at
Concordia University

Montreal, Quebec, Canada

October 2017

©Mohamed Tolba, 2017

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Mohamed Tolba

Entitled: Cryptanalysis of Block Ciphers with New Design Strategies

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Information Systems Engineering)

complies with the regulations of the University and meets the accepted standards with re-

spect to originality and quality.

Signed by the final examining committee:

Dr. Theodore Stathopoulos
Chair

Dr. Huapeng Wu
External Examiner

Dr. Anjali Agarwal
External to Program

Dr. Lingyu Wang
Examiner

Dr. Mohammad Mannan
Examiner

Dr. Amr M. Youssef
Thesis Supervisor

Approved by

Dr. Chadi Assi, Graduate Program Director

December 4th,2017
Dr. Amir Asif, Dean, Faculty of Engineering and Computer Science

Abstract

Cryptanalysis of Block Ciphers with New Design

Strategies

Mohamed Tolba, Ph.D.

Concordia University, 2017

Block ciphers are among the mostly widely used symmetric-key cryptographic primitives,

which are fundamental building blocks in cryptographic/security systems. Most of the public-

key primitives are based on hard mathematical problems such as the integer factorization in

the RSA algorithm and discrete logarithm problem in the DiffieHellman. Therefore, their

security are mathematically proven. In contrast, symmetric-key primitives are usually not

constructed based on well-defined hard mathematical problems. Hence, in order to get some

assurance in their claimed security properties, they must be studied against different types

of cryptanalytic techniques. Our research is dedicated to the cryptanalysis of block ciphers.

In particular, throughout this thesis, we investigate the security of some block ciphers con-

structed with new design strategies. These new strategies include (i) employing simple round

function, and modest key schedule, (ii) using another input called tweak rather than the usual

two inputs of the block ciphers, the plaintext and the key, to instantiate different permuta-

tions for the same key. This type of block ciphers is called a tweakable block cipher, (iii)

employing linear and non-linear components that are energy efficient to provide low energy

consumption block ciphers, (iv) employing optimal diffusion linear transformation layer while

following the AES-based construction to provide faster diffusion rate, and (v) using rather

weak but larger S-boxes in addition to simple linear transformation layers to provide prov-

iii

able security of ARX-based block ciphers against single characteristic differential and linear

cryptanalysis. The results presented in this thesis can be summarized as follows:

Initially, we analyze the security of two lightweight block ciphers, namely, Khudra and

Piccolo against Meet-in-the-Middle (MitM) attack based on the Demirci and Selçuk approach

exploiting the simple design of the key schedule and round function.

Next, we investigate the security of two tweakable block ciphers, namely, Kiasu-BC

and SKINNY. According to the designers, the best attack on Kiasu-BC covers 7 rounds.

However, we exploited the tweak to present 8-round attack using MitM with efficient enu-

meration cryptanalysis. Then, we improve the previous results of the impossible differential

cryptanalysis on SKINNY exploiting the tweakey schedule and linear transformation layer.

Afterwards, we study the security of new low energy consumption block cipher, namely,

Midori128 where we present the longest impossible differential distinguishers that cover com-

plete 7 rounds. Then, we utilized 4 of these distinguishers to launch key recovery attack

against 11 rounds of Midori128 to improve the previous results on this cipher using the im-

possible differential cryptanalysis. Then, using the truncated differential cryptanalysis, we

are able to attack 13 rounds of Midori128 utilizing a 10-round differential distinguisher.

We also analyze Kuznyechik, the standard Russian federation block cipher, against

MitM with efficient enumeration cryptanalysis where we improve the previous results on

Kuznyechik, using MitM attack with efficient enumeration, by presenting 6-round attack.

Unlike the previous attack, our attack exploits the exact values of the coefficients of the

MDS transformation that is used in the cipher.

Finally, we present key recovery attacks using the multidimensional zero-correlation

cryptanalysis against SPARX-128, which follows the long trail design strategy, to provide

provable security of ARX-based block ciphers against single characteristic differential and

linear cryptanalysis.

iv

Acknowledgments

First and foremost, I would like to express my special appreciation and sincere gratitude

to my supervisor, Dr. Amr Youssef, for his continuous support, motivation, patience, enthu-

siasm, and knowledge that helped me to finish this work. His willingness to give his time so

generously has been very much appreciated. I appreciate your invaluable advices you give

me on both research and my career.

Next, I would like to thank my colleagues in the CIISE Crypto Lab for their friendship

and support. Special thanks to Ahmed Abdelkhalek for the long hours we spent together in

discussing our research problems.

Finally, many grateful thanks for my lovely wife for her love, support, and encouragement

during my PhD study. Special thanks to my mother, my mother and father in-laws for their

support, encouragement, and love.

Mohamed Tolba

v

To my family for their love and support

Table of Contents

List of Figures ix

List of Tables xi

Chapter 1 Introduction 1

1.1 General Overview and Motivation . 1

1.2 Thesis Contributions . 4

Chapter 2 Background 6

2.1 Block Ciphers . 6

2.1.1 Block Cipher Design . 7

2.1.2 Block Cipher Evaluation . 8

2.2 Block Cipher Security . 9

2.2.1 Attack Models . 10

2.2.2 Generic Attacks . 10

2.3 Cryptanalytic Techniques . 11

2.3.1 Differential Cryptanalysis . 11

2.3.2 Linear Cryptanalysis . 13

2.3.3 Differential-Linear Cryptanalysis . 14

2.3.4 Higher-Order Differential Cryptanalysis 15

2.3.5 Truncated Differential Cryptanalysis 16

2.3.6 Integral Cryptanalysis . 17

2.3.7 Impossible Differential Cryptanalysis 17

2.3.8 Zero-Correlation Cryptanalysis . 18

2.3.9 Basic Meet-in-the-Middle Cryptanalysis 19

2.3.10 3-Subset MitM Cryptanalysis . 21

2.3.11 Splice-and-Cut Cryptanalysis . 22

2.3.12 Multidimensional MitM and Generalized MitM Cryptanalysis 23

2.3.13 Plain MitM and MitM with Efficient Enumeration Cryptanalysis . . . 23

2.3.14 Biclique Cryptanalysis . 25

vii

2.3.15 Unbalanced Biclique Cryptanalysis . 26

2.3.16 Invariant Subspace Cryptanalysis . 27

Chapter 3 MitM Attacks on Khudra and Piccolo 29

3.1 Introduction . 29

3.2 Plain MitM Attack on Khudra . 30

3.2.1 Specifications of Khudra . 30

3.2.2 A MitM Attack on 13-Round Khudra 32

3.2.3 A MitM Attack on 14-Round Khudra 35

3.3 Plain MitM Attack on Piccolo . 36

3.3.1 Specifications of Piccolo . 38

3.3.2 A MitM Attack on 14-Round Piccolo-80 41

3.3.3 A MitM Attack on 16-Round Piccolo-128 46

3.3.4 A MitM Attack on 17-Round Piccolo-128 48

3.4 Conclusion . 50

Chapter 4 A MitM with Efficient Enumeration Attack on Kiasu-BC 52

4.1 Introduction . 52

4.2 Specifications of Kiasu-BC . 53

4.3 A MitM Attack on 8-Round Kiasu-BC . 54

4.4 Conclusion . 58

Chapter 5 Impossible Differential Cryptanalysis of SKINNY 59

5.1 Introduction . 59

5.2 Specifications of SKINNY . 61

5.3 An Impossible Differential Distinguisher of SKINNY 64

5.4 Impossible Differential Key-recovery Attack on 20-round SKINNY-n-2n 65

5.4.1 Impossible Differential Key-recovery Attack on SKINNY-64-128 65

5.4.2 Impossible Differential Key-recovery Attack on SKINNY-128-256 . . . 72

5.5 Impossible Differential Key-recovery Attack on 18-round SKINNY-n-n 74

5.6 Impossible Differential Key-recovery Attack on 22-round SKINNY-n-3n . . . 75

5.7 Conclusion . 76

Chapter 6 Cryptanalysis of Midori128 77

6.1 Introduction . 78

6.2 Specifications of Midori128 . 80

6.3 Improved Multiple Impossible Differential Cryptanalysis of Midori128 83

6.3.1 7-round Impossible Differential Distinguishers of Midori128 83

6.3.2 11-round Multiple Impossible Differential of Midori128 86

viii

6.4 Truncated and Multiple Differential Cryptanalysis of Reduced Round Midori128 90

6.4.1 A 10-round Differential of Midori128 90

6.4.2 13-round Truncated Differential Cryptanalysis of Midori128 93

6.4.3 Multiple Differential Cryptanalysis of Midori128 97

6.5 Conclusion . 98

Chapter 7 AMitM with Efficient Enumeration Cryptanalysis of Kuznyechik 100

7.1 Introduction . 100

7.2 Specifications of Kuznyechik . 101

7.3 A MitM attack on 6-round Kuznyechik . 103

7.4 Conclusion . 109

Chapter 8 Multidimensional Zero-Correlation Attacks on SPARX-128 110

8.1 Introduction . 110

8.2 Specifications of SPARX-128 . 112

8.3 Zero-Correlation Distinguisher of SPARX-128/128 and SPARX-128/256 . . . 115

8.4 Multidimensional Zero-Correlation Cryptanalysis of SPARX-128 116

8.4.1 Multidimensional Zero-Correlation Attack on SPARX-128/256 116

8.4.2 Multidimensional Zero-Correlation Attack on SPARX-128/128 122

8.5 Conclusion . 124

Chapter 9 Summary and Future Research Directions 125

9.1 Summary of contributions . 125

9.2 Future work . 128

Bibliography 130

Appendix A SKINNY-64-128 Key Schedule Relations 147

Appendix B SKINNY-128-256 Key Schedule Relations 150

Appendix C SKINNY-64-64/SKINNY-128-128 Key Schedule Relations 152

Appendix D SKINNY-64-192/SKINNY-128-384 Key Schedule Relations 153

Appendix E Chosen Plaintext MitM Attack on 5-round Kuznyechik 156

Appendix F Key Schedule Relations for SPARX-128/128 158

Appendix G Zero-Correlation Distinguisher for SPARX-64/128 159

ix

List of Figures

1.1 A taxonomy of cryptographic primitives . 2

2.1 Iterative block ciphers . 7

2.2 Approaches for constructing block ciphers 8

2.3 Meet-in-the-middle with a splice and cut technique 23

2.4 General structure of the biclique cryptanalysis 26

2.5 d-dimensional biclique . 26

2.6 Star biclique . 27

3.1 Structure of Khudra . 31

3.2 6-round distinguisher to attack 13-round Khudra 32

3.3 13-round attack on Khudra . 34

3.4 6-round distinguisher to attack 14-round Khudra 36

3.5 14-round attack on Khudra . 37

3.6 Structure of Piccolo . 40

3.7 5-round distinguisher to attack 14-round Piccolo-80 43

3.8 14-round attack on Piccolo-80 . 44

3.9 7-round distinguisher to attack 16-round Piccolo-128 47

3.10 16-round attack on Piccolo-128 . 48

3.11 6-round distinguisher to attack 17-round Piccolo-128 49

3.12 17-round attack on Piccolo-128 . 51

4.1 Tweak addition to the round key in Kaisu-BC 53

4.2 A MitM attack on 8-round Kiasu-BC . 56

5.1 The SKINNY round function . 62

5.2 The tweakey schedule . 64

5.3 Impossible differential distinguisher of SKINNY 65

5.4 Impossible differential attack on 20-round SKINNY-n-2n 67

6.1 SSb0, SSb1, SSb2, and SSb3 . 81

x

6.2 7-round impossible differential distinguisher of Midori128 84

6.3 The propagation of a difference pattern ∆ = xx0000xx through SSb1 85

6.4 11-round multiple impossible differential cryptanalysis of Midori128 87

6.5 A 10 rounds differential of Midori128 . 91

6.6 13-round truncated differential of Midori128 95

7.1 Encryption scheme . 102

7.2 Key schedule . 104

7.3 Kuznyechik 6-round attack . 106

8.1 SPARX structure . 113

8.2 SPARX-128/128 and SPARX-128/256 step structure 114

8.3 SPARX-128/128 key schedule permutation 115

8.4 SPARX-128/256 key schedule permutation 115

8.5 A 20-round zero-correlation distinguisher of SPARX-128/128 and SPARX-

128/256 . 117

8.6 Illustrations of Observations 1,2 and 3 . 118

8.7 A 24-round multidimensional zero-correlation linear cryptanalysis of SPARX-

128/256 . 119

8.8 A 22-round multidimensional zero-correlation linear cryptanalysis of SPARX-

128/128 . 123

E.1 Kuznyechik 5-round attack . 157

F.1 Key secluded relations of SPARX-128/128 158

G.1 A 12-round zero-correlation distinguisher of SPARX-64/128 159

xi

List of Tables

3.1 Summary of the cryptanalysis results on Piccolo-80 38

3.2 Summary of the cryptanalysis results on Piccolo-128 38

5.1 The time, data and memory complexities of our attacks 59

5.2 Number of rounds for SKINNY-n-t . 62

5.3 The SKINNY LFSR used in the tweakey schedule 63

5.4 Time complexity of the different steps of the attack on 20-round SKINNY-64-

128. 73

5.5 Time complexity of the different steps of the attack on 18-round SKINNY-64-64

and SKINNY-128-128 . 75

6.1 4-bit bijective S-box Sb1 in hexadecimal form 81

6.2 Time complexity of the different steps, for each list Li, of the attack on 11-

round Midori128 . 89

6.3 The characteristics distribution of the 10-round differential 92

6.4 The 2−123 10-round characteristic of Midori128 92

6.5 10-round differentials of Midori128 . 99

8.1 Key recovery process of the attack on 24-round SPARX-128/256 121

A.1 SKINNY-64-128 tweakey relations. 148

A.2 SKINNY-64-128 equivlant tweakey relations. 149

B.1 SKINNY-128-256 tweakey relations. 150

B.2 SKINNY-128-256 equivlant tweakey relations. 151

C.1 SKINNY-64-64 and SKINNY-128-128 tweakey relations. 152

C.2 SKINNY-64-64 and SKINNY-128-128 equivlant tweakey relations. 152

D.1 SKINNY-64-192 tweakey relations. 153

D.2 SKINNY-64-192 equivlant tweakey relations. 154

D.3 SKINNY-128-384 tweakey relations. 154

xii

D.4 SKINNY-128-384 equivlant tweakey relations. 155

xiii

Chapter 1

Introduction

1.1 General Overview and Motivation

Cryptography is the study of mathematical techniques to achieve information security. The

aim of cryptography [105] is to help ensure the following security goals: (i) confidentiality,

which keeps the content of information from all but those authorized to have it, (ii) data

integrity, which addresses the unauthorized alteration of data, (iii) authentication, which ad-

dresses the identification, and it has two major classes: entity authentication and data origin

authentication, and (iv) non-repudiation, which prevents an entity from denying previous

commitments or actions.

The above goals can be obtained through the use of various primitives such as block ciphers,

hash functions, Message Authentication Codes (MACs), and digital signatures. As illustrated

in Figure 1.1, cryptographic primitives can be classified into three categories, namely, unkeyed

primitives, symmetric-key primitives, and public-key primitives. For unkeyed primitives, no

secret information is used. Hash functions are important examples of these primitives where

their main functionality is to provide data integrity. Nowadays, there are a lot of efficient and

secure hash functions such as Keccak, the winner of the SHA-3 competition [25], the Russian

hash function standard Streebog [4], and the Ukraine hash function standard Kupyna [111],

to name a few.

Symmetric-key primitives are another type of cryptographic primitives, where a single se-

cret key is shared between the communicating entities. These types of primitives include the

following primitives: block ciphers where the secret key is used to map a data block of fixed

length, called plaintext, to a data block of the same length, called ciphertext, through an

encryption algorithm; and map the ciphertext to plaintext through a decryption algorithm.

The Advanced Encryption Standard (AES) is an example of symmetric-key block ciphers.

1

Figure 1.1: A taxonomy of cryptographic primitives [105]

MACs, which provide data origin authentication, are another type of symmetric-key primi-

tives and can be constructed using keyed hash functions. MAC schemes can also be based

on block ciphers instead of hash functions, but hash functions-based MACs are usually faster

than block ciphers-based ones.

Public-key primitives differ from symmetric-key primitives in that every communicating

party has two different keys, namely public and private keys, where the public key is globally

known to everyone and the private key is kept secret. Given the public key, it is infeasible

to compute the corresponding private key, however the public key is easily computable from

its corresponding private key. The public key should be related to the entity that has its

corresponding private key through a certificate issued by a trusted authority. The RSA

algorithm is an example of public-key encryption schemes.

When using symmetric-key primitives, there is a need for key management schemes, es-

pecially in larger networks because every two communicating parties should have their pri-

vate key, and every time they establish connection they need another secret key. On the

other hand, compared to public-key primitives, symmetric-key primitives have much higher

2

throughput. Therefore, in practice, to acquire the advantages of the two primitives, public-

key primitives are used to establish session keys that are utilized for encryption and decryp-

tion using symmetric-key primitives.

Cryptanalysis is the scientific discipline of dissecting and studying the security of cryp-

tographic primitives aiming to discover weaknesses that can result in violating the security

aspects provided by the primitives. Most of the public-key primitives are based on hard math-

ematical problems such as the integer factorization in the RSA algorithm and the discrete

logarithm problem in DiffieHellman schemes. Therefore, their security are mathematically

proven. In contrast, symmetric-key primitives do not depend on such hard mathematical

problems. Hence, to get some assurance in their claimed security properties, they must be

carefully analyzed against different types of cryptanalytic techniques that will be mentioned

in the next chapter.

Symmetric-key block ciphers can be used to build other primitives such as hash functions,

MAC schemes, stream ciphers, and Authenticated Encryption (AE) schemes. Moreover,

block ciphers are basic component in any cryptosystem (a cryptosystem is system incorpo-

rating a number of primitives to provide a more complex solution), and as mentioned above,

their security are not mathematically proven as in the public-key primitives. In addition, due

to the rapid increase of the development of resource constrained devices such as RFIDs and

wireless sensor networks, several lightweight block ciphers were recently proposed in order to

be deployed on these resource constrained devices. These lightweight block ciphers usually

have shorter key length, simple key schedules, and more compact round functions.

Therefore, the security of these block ciphers, whether they are conventional or lightweight,

should be well studied because any weakness can result in breaking the cryptosystems that

are using them. Hence, throughout this thesis, we focus on the analysis of some block ciphers

that employ new design strategies. Some of these block ciphers were presented at the NIST

lightweight cryptography workshop in addition to top tier conferences such as CRYPTO,

ASIACRYPT and CHES. Furthermore, these block ciphers are expected to be deployed in

resource constrained devices (including IoT devices) in the near future. On the other hand,

these new strategies include (i) the use of more compact round function and key schedule in

order to be deployed on resource constrained devices (lightweight block ciphers), (ii) the use of

another input called tweak, to instantiate different permutations for the same key (tweakable

block ciphers), (iii) the use of low energy linear and non-linear layers (low energy consumption

block ciphers), (iv) the use of optimal diffusion linear transformation layers (high diffusion

rate block ciphers), and (v) the use of large S-boxes in addition to simple linear layer, to

provide provable security against differential and linear cryptanalysis for ARX-based block

3

ciphers.

1.2 Thesis Contributions

In this thesis, we analyze some block ciphers that employ new design strategies against a

list of advances cryptanalytic attacks. These ciphers include the lightweight block ciphers

Khudra and Piccolo; the tweakable block ciphers Kiasu-BC and SKINNY; the low energy

block cipher Midori128; the high diffusion rate block cipher Kuznyechik; and the long trail

strategy-based cipher SPARX-128. Our contributions can be summarized as follows:

- We study the implication of using more compact round function in addition to simple

key schedule by analyzing two lightweight block ciphers, namely, Khudra and Piccolo

using MitM attack based on Demirci and Selçuk approach (Plain MitM).

- We investigate the security of the tweakable block cipher Kiasu-BC, where we exploit

the additional input tweak to present 8-round attack using MitM with efficient enu-

meration technique.

- We mount key recovery attacks against all the 6 variants of SKINNY family of lightweight

tweakable block ciphers. More precisely, we exploit the properties of the mix column

operation and the simple tweakey schedule to launch impossible differential attacks

against all the variants of SKINNY.

- We analyze the strength of the low energy consumption block cipher Midori128 against

two different attacks. In particular, we propose the longest impossible differential dis-

tinguisher that covers complete 7 rounds, including the mix column operations, of

Midori128. Then, we exploit the existence of multiple such distinguishers to launch a

key recovery attack against 11 rounds of Midori128 using multiple impossible differ-

ential cryptanalysis. Then, using the differential cryptanalysis, we propose 10-round

differential distinguishers that are exploited to mount a 13-round key recovery attack

against Midori128 using truncated differential cryptanalysis.

- We study the security margin of the standard Russian block cipher Kuznyechik. In

particular, we show that there exists a 5-round attack in the chosen plaintext model.

Then, using the exact values of the coefficient of the mix column operation, we are

able to present a 6-round attack using MitM with efficient enumeration cryptanalysis

technique.

- We analyze the long trail design strategy employed in the SPARX family of ARX-

based block ciphers. More precisely, we propose 20/21-round distinguishers against

4

SPARX-128 utilizing the zero-correlation property. Then, we exploit these distinguish-

ers to launch key recovery attacks against SPARX-128 using the multidimensional zero

correlation cryptanalysis technique.

The above contributions have been published in [126, 127, 128, 129, 130, 131, 132, 133].

Other works conducted during the tenure of this Ph.D. have been published in [6, 7, 8, 9, 134].

5

Chapter 2

Background

In this chapter, we present a brief description of block ciphers and their constructions. Then,

we discuss different attack models that are utilized in the analysis of block ciphers. Finally,

we review some of the cryptanalytic techniques that can be utilized to mount attacks on

block ciphers such as differential, linear, differential-linear, higher-order differential, integral,

truncated, impossible, and Meet-in-the-Middle cryptanalytic techniques.

2.1 Block Ciphers

A block cipher E is a keyed permutation. More specifically, it is a bijective mapping from the

plaintext P to the ciphertext C. Applying this mapping E is called encryption and applying

the inverse of E is called decryption. More formally, a block cipher is defined as follows:

Definition 1 Block cipher [37]. A mapping E : Fn
2 ×Fk

2 → Fn
2 is called a block cipher with

block size n bits and key size k bits, if the mapping E(., K) is a bijection for each K ∈ F
k
2,

that is, if the inverse mapping E−1(., K) exists with E−1(E(K, x), K) = x for each K ∈ Fk
2

and x ∈ Fn
2 .

A block cipher has 2k permutations, i.e., each key corresponds to one permutation, while

for a block length of n bits, we have 2n! permutations. Therefore, for a block cipher to be

ideal, its permutations should be chosen randomly from 2n!. More formally, an ideal block

cipher is defined as follows:

Definition 2 Ideal block cipher [37]. A block cipher E is called ideal, if E is defined

by assigning a random element of the symmetric group SFn
2
to each of the 2k permutations

E(., K).

6

Round 1

Round 2

Round i

Round r

K
ey Schedule
A

lgorithm

P = X1

X2

Xi

Xr

C = Xr+1

Master Key
K

Plaintext

Ciphertext

RKi

RK1

RK2

RKr

Figure 2.1: Iterative block ciphers

2.1.1 Block Cipher Design

Currently, most of the newly proposed block ciphers have a block length of 128 bits and a

key length of 128/192/256 bits, while newly proposed lightweight block ciphers have a block

length of 64 bits and key lengths of 64/80/92/128 bits. As illustrated in Figure 2.1, most of

the block ciphers are implemented by applying a round function (f) r times, this what we

call iterative block ciphers, where in round i, the round function fi updates the internal state

Xi using the round key RKi to obtain a new state Xi+1. The round keys RKis are generated

from the master key K using the key schedule algorithm.

There are two main designs of block ciphers, namely Feistel Network (FN) and Substitution

Permutation Network (SPN). In the FN ciphers, the data block is split into two halves, namely

Li, Ri, as illustrated in Figure 2.2a. Then, the round function is applied to the right half Ri.

Then, the output of the round function fi(Ri, RKi) is XORed with the left half Li. Finally,

the resulting two halves are swapped. DES [2] is an example of the FN ciphers. While, in

the SPN ciphers the round function is applied to the whole data block. First, the data block

Xi is XORed with the round key RKi; this operation is called the key addition. Second,

a non-linear layer called the substitution layer is applied to the output of the key addition

layer Xi ⊕ RKi. Finally, a linear permutation is applied to the output of the previous layer

as shown in Figure 2.2b. AES [3] is an example of SPN block ciphers. The major difference

between the FN and SPN ciphers is that the round function in the FN can be non bijective

while the round function in the SPN ciphers should be bijective in order to have unique

decryption.

7

Li Ri

fi

Li+1 Ri+1

RKi

(a) Feistel Network

Xi

Substitution Layer

RKi

Permutation Layer

Xi+1

(b) Substitution Permutation Network

Figure 2.2: Approaches for constructing block ciphers

The round function in the iterative block ciphers consists of two categories of layers, namely

linear and non-linear layers. The linear layer contains XOR addition, bit rotations, or permu-

tations. While the non-linear layer contains operations such as substitution boxes, addition

modulo 2n, or multiplication modulo 2n. By employing these simple operations in the round

function and iterating the round function r rounds, we achieve the required mixing between

the plaintext and key in order to achieve high security. The branch number can be used to

evaluate the diffusion power of the linear transformation.

Definition 3 [99] Suppose that B = {0, 1}8 and N = {0, 1, 2, 3, · · · }. Let W : B∗ → N

be the function returning the number of non-zero bytes of an input byte tuple. The branch

number of a linear transformation L : Bm → Bn (for specific values of m and n) is defined

to equal the minimum value of W (x) +W (L(x)), where x ∈ Bm − {0m}.

2.1.2 Block Cipher Evaluation

According to [105], block ciphers can be assessed in practice using the following criteria:

1. Estimated security level. Confidence in the (historical) security of a cipher grows if

it has been subjected to and withstood expert cryptanalysis over a substantial time

period; such ciphers are certainly considered more secure than those which have not.

2. Key size. The effective bit length of the key, or more specifically, the entropy of the key

space, defines an upper bound on the security of a cipher (by considering exhaustive

search). Longer keys typically impose additional costs (e.g., generation, transmission,

storage, and difficulty to remember passwords).

3. Throughput. Throughput is related to the complexity of the cryptographic mapping

(see below), and the degree to which the mapping is tailored to a particular implemen-

tation medium or platform.

8

4. Block size. Block size impacts both security (larger is desirable) and complexity (larger

is more costly to implement). Block size may also affect performance, for example, if

padding is required.

5. Complexity of cryptographic mapping. Algorithmic complexity affects the implemen-

tation costs both in terms of development and fixed resources (hardware gate count or

software code/data size), as well as real-time performance for fixed resources (through-

put). Some ciphers specifically favor hardware or software implementations.

6. Data expansion. It is generally desirable, and often mandatory, that encryption does

not increase the size of plaintext data. Randomized encryption techniques result in

data expansion.

7. Error propagation. Decryption of ciphertext containing bit errors may result in var-

ious effects on the recovered plaintext, including propagation of errors to subsequent

plaintext blocks. Different error characteristics are acceptable in various applications.

Block size (above) typically affects error propagation.

2.2 Block Cipher Security

Cryptanalysis is the complementary discipline of the cryptography. It is important to

evaluate the security of block ciphers to determine their effective security margin. According

to [105], attacks on block ciphers can result in a total break (given subset of the plain-

text/ciphertext pairs, the key can be recovered by the adversary) or in a partial break (given

the ciphertext, the plaintext can be recovered by the adversary) of these ciphers.

The security of the block ciphers can be evaluated assuming the following [105]: the data is

transmitted over non-secure channel (thus, the adversary can know all the data transmitted

over this channel) and the only secret in the encryption system is the key (i.e., all the details

of the encryption system are accessible by the adversary) .

In the context of symmetric-key ciphers, a cryptanalytic attack is an algorithm that tries

to retrieve part of or the whole secret key, or even to distinguish between a block cipher and a

random permutation. Therefore, we use the following criteria to determine the effectiveness

of different attacks [99]: data complexity (the numbers of plaintexts and/or ciphertexts

required for execution of the attack), memory complexity (the amount of memory required

for execution of the attack), and time complexity (the amount of computation or time required

for execution of the attack).

9

2.2.1 Attack Models

Attack models can also be classified based on the information available to the eavesdropper

and assumptions about her capabilities[105]:

1. Ciphertext-only: Only the ciphertext is available.

2. Known-plaintext: Plaintext/ciphertext pairs are available.

3. Chosen-plaintext: The adversary has access to the ciphertexts corresponding to the

plaintexts she chooses.

4. Adaptive chosen-plaintext: The adversary may be choose a plaintext depending on a

previously chosen-plaintext.

5. Chosen-ciphertext: The adversary has access to the plaintexts of the ciphertexts she

chooses.

6. Adaptive chosen-ciphertext: The adversary may choose a ciphertext depending on a

previously chosen-ciphertext.

2.2.2 Generic Attacks

Generic attacks are attacks that can be applied on any block cipher of block length n bits

and key length k bits regardless of the structure of the cipher. In what follows we describe

three of these attacks [99]:

1. Dictionary attack: This attack can deduce the key that is used to encrypt a specific

plaintext. This is served by constructing a table containing 2k ciphertexts for specific

plaintext using all the 2k possible keys. This attack can deduce the unique key when

k < n, while in the case of k > n, it recovers 2k−n key candidates. This attack requires

2k pre-computations, 2k ciphertexts, and 2k n-bit memory storage.

2. Codebook attack: This attack is different from the previous attack in that, all the

possible 2n plaintexts are encrypted using specific (unknown) key and stored in a table

indexed by the ciphertext. Then, the attacker can deduce the plaintext of any obtained

ciphertext, given that it is encrypted using this specific key. This attack requires 2n

pre-computations, 2n plaintext/ciphertext pairs, and 2n n-bit memory storage.

3. Exhaustive key search: This attack exhaustively examines every possible value of the

2k keys, given plaintext/ciphertext pair; and the correct key is the one that encrypts

this specific plaintext to its corresponding ciphertext. This attack has time complexity

of 2k encryptions, one plaintext/ciphertext pair, and negligible memory.

10

2.3 Cryptanalytic Techniques

As mentioned above, the cryptanalyst task is to recover the key or parts of the plaintext given

the ciphertext under the previous attack models. Therefore, many cryptanalysis techniques

were developed to evaluate the security of block ciphers. Examples of these cryptanalytic

techniques include differential, linear, impossible differential and integral cryptanalysis. In

what follows we give a very brief description of some of these cryptanalysis techniques.

2.3.1 Differential Cryptanalysis

Differential cryptanalysis was proposed by Biham and Shamir, who applied it to DES [28] in

1990. This attack was able to break 8rounds of DES in few minutes and is faster than the

exhaustive search on 15-round of DES. Then, in 1993, the full round DES was first attacked

by Biham and Shamir using the differential cryptanalysis [29, 30] in time 237 encryptions

using 236 ciphertexts. Since then, differential cryptanalysis has became one of the most

widely used analysis techniques not only on block ciphers, but also on other symmetric-key

cryptographic primitives.

Differential cryptanalysis tries to exploit the advantage of having a pair of inputs having

specific input difference that is highly correlated with their output difference (this output

difference is obtained by encrypting the input pairs using the same key) to deduce some

information about the secret key. This difference can be expressed in many ways, but the

XOR difference is the most widely used notion in the differential cryptanalysis, i.e., the input

difference ∆X of the input pairsX1 andX2 can be expressed as follows: ∆X = X1⊕X2. This

attack works under the chosen plaintext model. In iterative block ciphers, the differential on

an i-round reduced cipher Ered = fi◦· · ·◦f2◦f1 can be defined using the input difference ∆X1

of the first round and the output difference ∆Xi+1 of the last round. While the characteristic

is defined using the input difference ∆X1, the output difference ∆Xi+1, and the intermediate

differences ∆Xj , where 1 < j ≤ i. Therefore, the differential is a set of characteristics having

the same input and output differences while the intermediate state differences can be varied.

As mentioned above, the round function has two main types of operations, namely linear

and non-linear operations. The difference can be propagated deterministically with respect

to the linear operations while in the non-linear operations, it propagates probabilistically.

Therefore, any differential ∆X1
p
→ ∆Xi+1 has a differential probability p. This differential

can be used to distinguish the reduce round cipher Ered from a random permutation, if

p > 21−n, for block cipher of n-bit block length. The differential probability p of a differential

characteristic in an iterative block cipher can be computed by first analyzing the non-linear

11

operations in each round. S-boxes are the most commonly used non-linear components in

block ciphers. According to [99], we define the differential probability of an S-box as follows:

Definition 4 [99] Suppose T is an m× n S-box. If ∆γ is an m-bit input difference and ∆δ

is an n-bit output difference, then the probability of the differential (∆γ,∆δ) for T , written

∆γ → ∆δ, is defined to be

PrT (∆γ → ∆δ) = PrP∈{0,1}m(T (P)⊕ T (P ⊕∆γ)) = ∆δ.

=
|{X ∈ {0, 1}m|T (x)⊕ T (x⊕∆γ) = ∆δ}|

2m
.

The differential probability pj of round j, for a given key, can be computed from the mul-

tiplication of the differential probability of the active S-boxes (the active S-box is the S-box

that has nonzero input difference), assuming the independence between the active S-boxes.

Finally, the differential probability p of Ered is p =
∏i

j=1 pj, assuming the independence of

the differential probabilities between the rounds.

The obtained differential on Ered can be used to launch key recovery attack on the whole

r-round cipher E. First, we gather N = c/p (c is a constant) chosen plaintext pairs such that

every pair has the input difference ∆X1 and ask the encryption oracle for their corresponding

ciphertexts. Then, for each pair of the ciphertexts, the round keys RKr, · · · , RKi+2, RKi+1,

that are involved in the computation of the output of the reduced round cipher Ered from

the ciphertext, are guessed. Then, for each key we count the number of right pairs that have

the output difference ∆Xi+1. Finally, the right key is the one that has the maximal counter

value.

Many approaches and tools have been developed to facilitate the cryptanalysis of block

ciphers. In [109], Mouha et al. proposed an approach for finding the lower bound on the

number of active non-linear components, in particular the S-boxes that involve a nonzero

difference, and used the Maximum Differential Probability (MDP) of the S-boxes to drive an

upper bound on the differential probability of the best differential characteristic. However,

several block ciphers use modular addition as a source of non-linearity instead of S-boxes.

Thus, for such ciphers, one needs to calculate the differential probability of modular addition

to prove their security against differential cryptanalysis and its variations. In the former

case of block ciphers employing, usually small-sized S-boxes, it is a simple task to calcu-

late the differential probability of a given S-box by constructing its difference distribution

table. Building a difference distribution table becomes impractical for block ciphers that

employ addition modulo 264 or even modulo 232. To address this problem, Mouha et al. [108]

proposed using a graph theoretic approach to calculate the differential probability xdp+ of

12

addition modulo 2n, when differences are expressed using XOR and the differential proba-

bility adp⊕ of XOR when differences are expressed using addition modulo 2n with a linear

time in the word length. Later on, Biryukov and Velichkov [35] developed a new framework

to automatically find differential trails in ARX (Addition, Rotation and XOR) based block

ciphers by constructing a partial difference distribution table containing differentials whose

probabilities are greater than a fixed threshold. Currently, there is a lot of research towards

finding the best differential (trail) that can be exploited to launch an attack against block

ciphers as exemplified by the work done by Song et al. [119], Biryukov et al. [36], and Bannier

et al. [19].

Differential cryptanalysis can be avoided by maximizing the number of active S-boxes

(or non-linear elements employed in the cipher) in any differential trail and minimizing the

maximum differential probability of the employed S-boxes in the cipher.

2.3.2 Linear Cryptanalysis

The original linear attack was developed by Matsui and Yamagishi and applied on FEAL

[103] in 1992. Then, in 1993, it was applied by Matsui to break the full round DES using 243

known plainttexts [102]. Its application is not limited to block ciphers only, but it is widely

used against other symmetric-key primitives.

Linear cryptanalysis is a known plaintext attack which tries to find a linear relation between

the input and output of a block cipher by linearizing the non-linear operations in the cipher.

The most widely used linear relation for the input and output is the bitwise product operation

(•). More specifically, for the reduced round cipher Ered = fi ◦ · · · ◦ f2 ◦ f1 with input X1 and

output Xi+1, the linear relation has the following form:

ΓX1 •X1 ⊕ ΓXi+1
•Xi+1 = 0,

where ΓX1 ,ΓXi+1
indicate the input and output linear masks applied on X1, Xi+1, respec-

tively. The linear hull of this linear relation is represented by (ΓX1,ΓXi+1
). Analogous to

the characteristic in the differential cryptanalysis, the linear approximation can be defined

by the input mask ΓX1 , intermediate state masks ΓXj
(1 < j ≤ i), and output mask ΓXi+1

.

Therefore, the linear hull is a set of linear approximations that have the same input and

output masks and different intermediate state masks.

Due to the existence of the non-linear operations in any iterative block ciphers, the linear

hull ΓX1

p
→ ΓXi+1

holds with a probability p. The effectiveness of the linear hull can be

determined from the bias ε = |p− 1/2| of the relation, i,e., a linear approximation of a bias

13

ε > 0 can be used to distinguish the reduced round cipher Ered from a random permutation

(its bias ε = 0). The correlation and capacity of a linear approximation can be defined as

c = 2 × ε and c2, respectively. In iterative block ciphers, the bias ε of a linear relation

can be computed by analyzing the non-linear components, S-boxes, as in the differential

cryptanalysis. First, we try to find the best linear approximation ΓXj

pj
→ ΓXj+1

for each

round j that holds with a correlation cj . Then, the obtained linear approximations of the

i rounds are connected using the piling-up lemma [102] to obtain the reduced cipher Ered

linear approximation ΓX1

p
→ ΓXi+1

that holds with correlation c =
∏i

j=1 cj and bias ε = c/2.

If we have m linear approximations, each has correlation ch (1 ≤ h ≤ m) with the same input

and output masks, then the linear hull capacity c2 =
∑m

h=1 c
2
h.

Similar to the differential cryptanalysis, the linear approximation distinguisher can be used

to launch key recovery attack on the full cipher E, by gathering N = c/ε2 (c is a constant)

known plaintext/ciphertext pairs and guessing the round keys that are needed to compute

the output parity ΓXi+1
• Xi+1 from the ciphertext. The correct key is the one that has a

maximal number of plaintext/ciphertext pairs satisfying the linear relation.

Analogous to differential cryptanalysis, many automated tools were developed in order to

facilitate the work of the cryptanalyst. The same MILP-based approach developed by Mouha

et al. [109] can be used to obtain bounds on the minimum number of active S-boxes and thus

on the maximum linear bias. Sun et al. utilized the MILP technique [124] to build a tool that

finds the best linear trail which holds with a high probability. Later, Liu et al. used a SAT

solver to automatically search for linear trails in ARX based block ciphers and applied this

technique to the SPECK block cipher and the lightweight MAC primitive Chaskey, which is

being considered for standardization by ISO/IEC and ITUT [98].

Similar to the differential cryptanalysis, this type of attacks can be avoided by maximizing

the number of active S-boxes in any linear approximation and minimizing the maximum

correlation of the employed S-boxes in the cipher.

2.3.3 Differential-Linear Cryptanalysis

In 1994, the differential and linear cryptanalysis were combined in one attack, namely

differential-linear cryptanalysis, by Langford and Hellman [85]. This attack was proposed to

reduce the data complexity that is required in the differential or linear cryptanalysis. This is

achieved by the attack that was launched in [85] when it succeeds to attack 8-round of DES

using 512 chosen plaintexts instead of 5000 chosen plaintexts in the traditional differential

attack. The 8-round attack was launched using a 7-round distinguisher. The 7-round dis-

tinguisher is constructed using a 3-round differential that covers the first three rounds, and

14

a 4-round linear approximation, that covers the next 4 rounds. Then, this 7-round distin-

guisher is used to recover 10-bit information of the last round key. The main observation

in building the distinguisher is that flipping some bits in the input of the first round does

not change certain bits in the output of the third round, implying that the XOR of same

mask on these bits is zero. Then, exploiting these unchanged bits in a linear approximation

that has an input mask containing these unchanged bits only and output mask that contains

certain bits of the output of the 7th round is used to build the 7-round distinguisher. Finally,

the correct round key is the one that has the maximal number of ciphertext pairs that their

output parities are equal. The previous distinguisher exploits a differential with probability

1. Another variation of the differential-linear cryptanalysis that exploits probabilistic differ-

ential was introduced by Biham, Dunkelman and Keller in 2002 [27]. This enhanced version

was able to present the best attack on 9-round DES.

Recently this technique was successful in attacking 7-round Chaskey (Chaskey is a recent

lightweight MAC that is being considered for standardization by ISO/IEC and ITU-T) in

EUROCRYPT 2016 by Leurent [90].

The differential-linear attack was successful on 8-round DES because flipping bit in the

input of the first round results in unchanged bits of the output of the third round. Therefore,

to avoid such attacks the block cipher should reach the full diffusion after a small number of

rounds.

2.3.4 Higher-Order Differential Cryptanalysis

Higher-order differential cryptanalysis, proposed by Lai [84] in 1994, is a generalization of

the differential cryptanalysis. While in differential cryptanalysis the propagation of a spe-

cific difference, namely, the difference between two plaintexts, is studied in order to find

highly correlated input and output differences, in higher-order differential cryptanalysis the

propagation of differences between a large set of plaintexts is studied. Knudsen [80] indi-

cated that there are block ciphers that are resistant against differential cryptanalysis, but

not immune against higher-order differential cryptanalysis. As an example, for the round

function f(X, k) = (X + k)2 mod q with block length 2× log2q, where q is a prime number,

the non-trivial one round differential probability of this function is 1/q while its second-

order differential is constant, i.e., it holds with probability one. Later, another block cipher,

proposed by Nyberg and Knudsen, which was shown to be immune against differential crypt-

analysis [110], was attacked by Jakobsen and Knudsen [70] utilizing higher-order differential

cryptanalysis.

15

In general, the higher-order differential cryptanalysis is more powerful than its special vari-

ant, i.e., the differential cryptanalysis, especially when applied to round functions employing

low algebraic degree non-linear components. However, extending higher-order differential to

more than 2 rounds is not as simple as it is in differential cryptanalysis.

Since the effectiveness of higher-order differential cryptanalysis depends on the algebraic

degree of the non-linear components employed in the cipher, block ciphers should employ

high algebraic degree non-linear elements to avoid this attack.

2.3.5 Truncated Differential Cryptanalysis

Truncated differential cryptanalysis was proposed by Knudsen in 1994 [80]. While in dif-

ferential cryptanalysis, each bit of the input and output differences is specified, truncated

differential cryptanalysis is more concerned whether there is a difference or not. To illustrate

this point, let us take an example of a truncated differential for a 4-byte word represented

as 0110, where 0 indicates that the corresponding byte is inactive, or has a zero difference,

and 1 indicates that the corresponding byte is active, or has any nonzero difference. This

implies that a truncated differential can be considered as multiple differentials that have zero

difference in the inactive bytes and have all the possible differences in the active ones.

The truncated differential cryptanalysis was first applied to attack 6-round DES using

a small number of chosen plaintexts and very modest time complexity [80]. Afterwards,

Knudsen, Robshaw and Wagner, using the truncated differential cryptanalysis, proposed a

set of attacks on reduced round Skipjack block cipher [81]. First, they launched an efficient

key recovery attack against the first 16 rounds using practical data complexity. Second, the

key of the middle 16 rounds was efficiently retrieved using two chosen plaintexts. Finally, they

showed the existence of a 24-round truncated differential that holds with probability 1. Since

then, truncated differential cryptanalysis has been applied widely on many block ciphers such

as SAFER [139], IDEA [44], E2 [107], Camellia [89], CRYPTON [77], and KLEIN [113], to

name a few. Moreover, it has been used to launch the best known attacks on 3D [83] and

Midori128 [130] block ciphers.

In addition, truncated differential cryptanalysis is used in other cryptanalysis techniques

such as the Meet-in-the-Middle (MitM) with differential enumeration attack that was pro-

posed by Dunkelman, Keller, and Shamir [63]. It is also used in the MitM attacks on hash

functions to launch pre-image attack and in the rebound attack to launch collision attacks.

The resistance against this attack can be achieved by employing binary permutation layer

as this technique is only efficient on word oriented block ciphers.

16

2.3.6 Integral Cryptanalysis

Integral cryptanalysis was proposed by Daemen, Knudsen, and Rijmen in 1997 [52] to study

and analyze the security of the block cipher SQUARE. Then, it was unified and formalized

by Knudsen and Wagner [79]. In integral cryptanalysis, we examine the propagation of the

sum (XOR) of many plaintexts, not just two as in the differential cryptanalysis. Therefore,

we can consider the integral cryptanalysis as a dual technique of the differential cryptanalysis

as well. Integral cryptanalysis is quite useful especially in the analysis of block ciphers with

only bijective components.

In 2012, Lu et al. [100] proposed combining the integral attack with the MitM attack in

what they called the higher-order MitM attack. They used this technique to launch 10/11/12-

round attacks on Camellia-128/192/256 with FL/FL−1 functions and 14/16-round attacks

on Camellia-192/256 without FL/FL−1.

In Eurocrypt 2015, Todo proposed a new property which he named the division prop-

erty [125]. The division property can be considered as a generalization of the integral prop-

erty which, unlike the integral property, can exploit the algebraic degree of the block cipher.

Moreover, it can be applied against bit-oriented block ciphers and block ciphers that use

non-bijective components. In Crypto 2015, the division property was used to break the full-

round MISTY1 block cipher based on a 6-round integral distinguisher [125] which was further

enhanced in Crypto 2016 [20].

The effectiveness of this technique is based on the diffusion of the block cipher. Therefore,

high diffusion rate operations should be employed in the cipher. Moreover, the division

property utilizes the low algebraic degree of the non-linear elements. Hence, high algebraic

degree non-linear components can provide resistance against this attack.

2.3.7 Impossible Differential Cryptanalysis

Biham, Biryukov, and Shamir noticed that not only the differential characteristic with high

probability are useful. They exploit the differential characteristic of probability exactly 0,

namely impossible differential cryptanalysis, to exclude the wrong keys and applied it to

reduced-round Skipjack [26] where it able to attack 31 out 32 rounds.

Miss in the Middle is the general technique to construct the impossible differential distin-

guisher, where in the cipher E = E2◦E1, we try to find two differentials with probability one,

the first one covers the subcipher E1 and has the form ∆δ → ∆γ, and the second one covers

the subcipher E−1
2 , and has the form ∆β → ∆ζ , and the intermediate differences ∆γ,∆ζ do

17

not match. Finally, we have the differential ∆δ → ∆β that covers the whole cipher E and

holds with zero probability.

The impossible differential distinguisher can also be used to launch attacks against block

ciphers such that an i-round distinguisher can be extended to i+t rounds. Then, we choose the

plaintext pairs such that their differences equal ∆δ. Then, for the corresponding ciphertext

pairs we decrypt them by guessing the round keys in the t analysis rounds. Finally, we

exclude the wrong keys, i.e., keys for which partial decryption has the output difference ∆β.

The number of rounds that can be covered by the impossible differential depends on the i

rounds covered by the distinguisher and the t analysis rounds. To minimize the number of

rounds i+ t that is covered by the impossible differential attack, strong diffusion operations

should be utilized in the cipher. In addition, one should also avoid the use of S-boxes with

undisturbed bits.

2.3.8 Zero-Correlation Cryptanalysis

In the traditional linear cryptanalysis [103], the attacker tries to find a linear relation between

an input x and an output y of an n-bit block cipher function f that has the following form:

Γx • x⊕ Γy • y = 0,

where • is a bitwise dot product operation and Γx (Γy) is the input (output) linear mask.

This linear relation has a probability p, and in this type of attack it should be far from 1/2

or equivalently its correlation C = 2 × p − 1 is not zero. The following lemmas are used to

specify the propagation of linear masks through the different operations (XOR, branch, and

S-box) that are used in the round function.

Lemma 1 (XOR operation [39, 135]): Either the three linear masks at an XOR ⊕ are equal

or the correlation over ⊕ is exactly zero.

Lemma 2 (Branching operation [39, 135]): Either the three linear masks at a branching

point · sum up to 0 or the correlation over · is exactly zero.

Lemma 3 (S-box permutation [39, 135]): Over an S-box S, if the input and output masks

are neither both zero nor both nonzero, the correlation over S is exactly zero.

Later on, Bogdanov and Rijmen [39] proposed a new technique called zero-correlation

cryptanalysis which, in contrast to the linear cryptanalysis, exploits linear relations with

correlation exactly zero to exclude wrong keys which lead to this linear approximation. To

18

remove the burden of the high data complexity of the zero-correlation attack and the statis-

tical independence for multiple zero-correlation linear approximations, Bogdanov et al. [42]

proposed the multidimensional zero-correlation attack. In this technique, we have m differ-

ent linear approximations with zero-correlation, where all the l = 2m − 1 non-zero linear

approximations involved in the spanned linear space of these m linear approximations should

have zero-correlation. The zero-correlation linear approximation over rm rounds can act as a

distinguisher, then the attacker can prepend/append additional analysis rounds. The attack

proceeds by gathering N plaintext/ciphertext pairs and creating an array of counters V [z],

where |z| = m bits, and initializing it to zero. Then, for each plaintext/ciphertext pair and

key guess, the attacker computes the corresponding bits needed to apply the m linear ap-

proximations to compute z and increments the corresponding counter by one. Afterwards,

the attacker computes the statistic T [42]:

T =

2m−1∑

z=0

(V [z]−N2−m)2

N2−m(1− 2−m)
=

N2m

(1− 2−m)

2m−1∑

z=0

(
V [z]

N
−

1

2m

)2

. (2.1)

The right key has T that follows χ2-distribution with mean µ0 = l 2
n−N
2n−1

, and variance σ2
0 =

2l(2
n−N
2n−1

)2, while the statistic for the wrong key guess follows χ2-distribution with mean µ1 = l

and variance σ2
1 = 2l [42]. The number of known plaintexts required by the attack can be

estimated as follows [42]:

N =
2n(Z1−γ + Z1−ζ)
√

l/2− Z1−ζ

, (2.2)

where γ (resp. ζ) denotes the probability to incorrectly discard the right key (resp. the

probability to incorrectly accept a random key as the right key) and Zp = φ−1(p) (0 < p < 1),

φ is the cumulative function of the standard normal distribution. According to the required

γ and ζ probabilities, the decision threshold is set to τ = µ0 + σ0Z1−γ = µ1 − σ1Z1−ζ.

Since this technique can be seen as the dual of the impossible differential cryptanalysis, it

can be avoided using countermeasures similar to those used to defend against the impossible

differential cryptanalysis.

2.3.9 Basic Meet-in-the-Middle Cryptanalysis

MitM attacks can be viewed as enhanced/generalized exhaustive search techniques. These

attacks try to split the block cipher into two parts; one is used in the encryption direction and

the other is used in the decryption direction. Then, the attacker partially guesses key bits

from both ends and propagates the knowledge of the internal state of the block cipher until

the information propagated in both directions meet in the middle for matching. The key bits

19

are considered wrong if no match is found, otherwise it is a key candidate. This technique

was first introduced by Diffie and Hellman [59]. Later, it was applied to reduced-round DES

by Chaum and Evertse [50].

Suppose we have an r-round cipher EK : {0, 1}n −→ {0, 1}n, where K is the key that is

used in the block cipher and n is the block length in bits. If this cipher can be split into

two sub-ciphers FKf
and GKb

such that EK = GKb
◦FKf

and Kf , Kb are independent subkey

bits, then the attack can be launched as shown in Algorithms 1 and 2.

Algorithm 1: MitM attack with low space complexity

Data: Pi/Ci pairs, where Pi/Ci donate the plaintext/ciphertext pairs,
i = 1, 2, ..., N and N is determined by the unicity distance

Result: Right key kf and kb
foreach kf ∈ Kf do

foreach kb ∈ Kb do
compute v = Fkf (P1);

compute u = G−1
kb
(C1);

if v = u then
Test kf and kb using N plaintext/ciphertext pairs and return kf and kb
if the test succeed;

Algorithm 2: MitM attack with low time complexity

Data: Pi/Ci pairs, where Pi/Ci donate the plaintext/ciphertext pairs,
i = 1, 2, ..., N and N is determined by the unicity distance

Result: Right key kf and kb
foreach kf ∈ Kf do

compute v = Fkf (P1) and store v with the corresponding kf in table T1;

foreach kb ∈ Kb do
compute u = G−1

kb
(C1);

if u has a match in table T1 then
Test kf and kb using N plaintext/ciphertext pairs and return kf and kb if
the test succeed;

It is clear from Algorithms 1 and 2 that MitM attacks have the advantage of being able

to offer some time-memory trade-off. The computational complexity of Algorithms 1 and 2

are 2|Kf |+|Kb| and 2|Kf | +2|Kb|, respectively, and the memory complexity of Algorithms 1 and

2 are O(1) and O(2|Kf |), respectively. Algorithm 2 can be modified, by computing T1 for

the smaller key subset out of kf , kb and matching using the other key subset, to reduce its

20

memory complexity to O(2min(|Kf |,|Kb|)). The data complexity of the two algorithms is the

same and equals the unicity distance of the block cipher, i.e.,
⌈
k
n

⌉
.

In spite of the fact that this technique has a low data complexity, which is the unicity

distance, it got less attention than the linear and differential cryptanalysis. The reason for

this is that it needs to partition the block cipher into two parts that use independent subkey

bits. For modern block ciphers, this is not easy to achieve since their key schedules usually

contain non-linear components such as S-boxes and/or addition modulo 2n. Therefore, the

number of rounds that can be attacked by this technique is very limited. Recently, new

modifications of this basic MitM attack were proposed which allowing attackers to penetrate

more rounds or even the whole cipher as we discuss in the following subsections.

The resistant against all different types of the Meet-in-the-Middle attacks can be guaran-

teed by employing non-linear elements in the key schedule and reach the full diffusion after

small number of rounds.

2.3.10 3-Subset MitM Cryptanalysis

Bogdanov and Rechberger proposed a new variant of the basic MitM attack [43] and used it

to attack the full-round KTANTAN cipher. This technique relaxes the constraint of the two

keys Kf and Kb to be fully independent by splitting the key into three subsets instead of

two. This approach is divided into two main stages. The MitM stage in which the key space

is filtered depending on the matching criteria and the key testing stage in which the reduced

key space is tested exhaustively until the right key is found.

Let EK : {0, 1}n −→ {0, 1}n be an n-bit block cipher of r rounds that uses a k-bit key K.

Suppose this cipher can be split into two sub-ciphers FKf
and GKb

such that EK = GKb
◦FKf

.

In this approach, Kf and Kb do not need to be fully distinct. Let A0 = Kf ∩ Kb be the

common key bits used in FKf
and GKb

, and let A1 = Kf \ A0 and A2 = Kb \ A0 denote the

set of key bits that are used only in FKf
and GKb

, respectively. Then, the attack can be

launched as shown in Algorithm 3.

The computational complexity of the two stages: MitM stage and key testing stage, can

be determined as follows:

MitM stage
︷ ︸︸ ︷

2|A0|(2|A1| + 2|A2|) +

Key testing stage
︷ ︸︸ ︷

(2k−n + 2k−2n +)

21

Algorithm 3: Three-subset MitM attack [43]

Data: Pi/Ci pairs, where Pi/Ci donate the plaintext/ciphertext pairs,
i = 1, 2, ..., N and N is determined by the unicity distance

Result: Right key kf and kb
//MitM stage
foreach a0 ∈ A0 do

foreach a1 ∈ A1 do
compute v = Fa0,a1(P1);

foreach a2 ∈ A2 do
compute u = G−1

a0,a2
(C1);

perform the matching between v and u, let |v| = |u| = n-bit, where |v|
donates the length of v in bits, then we will have 2k−n remaining candidate;

//key testing stage
the remaining candidates are exhaustively searched until the right key is found;

The data complexity of this approach is dominated by the data needed in order to accom-

plish the key testing stage, and is determined by the unicity distance of the block cipher, i.e.,
⌈
k
n

⌉
. The memory required by this approach is used to save one of the lists A1 or A2. There-

fore, the memory complexity is min(2|A1|, 2|A2|). Clearly, this approach has an advantage

over exhaustive search when both sets A1 and A2 are not empty.

2.3.11 Splice-and-Cut Cryptanalysis

Aoki and Sasaki proposed another variant of the 3-subset MitM attack to perform a pre-

image attack on SHA-0 and SHA-1 hash functions [16]. This approach relaxed the constraint

of the MitM stage that should begin from the plaintext P and the ciphertext C to compute

the intermediate state values v and u, respectively. Instead, the attack begins from an

intermediate state X as shown in Figure 2.3. Then, by partially decrypting (encrypting) X

to obtain plaintext (ciphertext) and using the encryption (decryption) oracle, the attacker

can obtain the corresponding ciphertext (plaintext). After that, v and u can be computed

from X and C (or P), respectively. This approach changes the data requirement to chosen

plaintext instead of known plaintext as the previous variants. Moreover, its data complexity

is higher than the 3-subset MitM variant and determined by the plaintext (ciphertext) bits

that are effected by the guessed key bits, the computational complexity may be enhanced,

however.

22

�������� �
��
��������

��
������� �

����	
����������

������������� ��
�����������

��

Figure 2.3: Meet-in-the-middle with a splice and cut technique

2.3.12 Multidimensional MitM and Generalized MitM Cryptanal-

ysis

Two more variants of the MitM cryptanalysis are the Multidimensional MitM (MD-MitM)

and the generalized MitM cryptanalysis technique. The first one was proposed by Zu and

Gong [143]. In this approach, the block cipher is divided into multiple sub-ciphers where

the number of these sub-ciphers determines the dimension of the attack, e.g., if the block

cipher is divided into two sub-ciphers then the attack is called 2D-MitM attack. Then, by

guessing the intermediate states, a MitM attack can be launched on each sub-cipher. Finally,

the correct key is derived from the matching of the multiple MitM attacks. The basic MitM

attack can be considered as a special case of MD-MitM cryptanalysis and would be denoted

as 1D-MitM cryptanalysis.

The second variant, i.e., the generalized MitM cryptanalysis technique, was proposed by

Tolba and Youssef [134]. While in the 3-subset MitM attack, the key space is partitioned,

as mentioned above, into 3 subsets, namely, A0, A1 and A2 with the two subsets A1 and A2

are restricted to be independent. In the generalized MitM approach, the restrictions of the

3-subset MitM attack are elevated by allowing the key space to be partitioned into n ≥ 3

subsets and these subsets are allowed to be dependent. Using dependent subsets raises a new

problem of how to efficiently compute the internal states that are dependent on two or more

key subsets. To tackle this problem, the re-computation technique exploited in the biclique

cryptanalysis [40], discussed latter in this chapter, is utilized.

2.3.13 Plain MitM and MitM with Efficient Enumeration Crypt-

analysis

Demirci and Selçuk [55] started a new line of research on the MitM attack by launching 8-

round attacks on AES-192/256 [55]. This new MitM attack, which is called plain MitM in the

remaining parts of this thesis, splits the cipher into 3 subciphers such that E = E2◦Emid◦E1,

where Emid used as a distinguisher that its property is evaluated offline. Then, the keys in

23

the outer rounds E1, E2 are guessed to verify the distinguishing property. Finally, the key is

considered wrong if they do not satisfy the distinguishing property.

The distinguishing property is a truncated differential where its input takes a set of possible

values and its output is a parameterized function of the input. The values of the output

corresponding to the input form an ordered sequence that is used as our property to identify

the right key guess. All the ordered sequences resulting from all the possible combinations of

the parameters are stored in a precomputation table. The δ-set and b-δ-set concept [52, 67],

as captured by Definition 5 and 6, respectively, are used to build the distinguishing property.

Definition 5 (δ-set, [52]). A δ-set for nibble(byte)-oriented cipher is a set of 16(256) state

values that are all different in one nibble(byte) (the active nibble(byte)) and are all equal in

the remaining nibbles(bytes) (the inactive nibbles(bytes)).

Definition 6 (b-δ-set, [67]). A b-δ-set is a set of 2b state values that are all different in b

state bits (the active bits) and are all equal in the remaining state bits (the inactive bits).

The distinguishing property that is used to launch the attack on AES [55] is that each

output byte after 4 rounds of AES can be considered as a parametrized function of the

input, hence it depends on 25 byte parameters when the input has only one active byte [55].

Then, the number of parameters were reduced to 24 byte parameters [56] by considering the

difference of the output byte instead of its value, as one of the parameters is the key and

it is fixed for all the functions. Even after the reduction in the number of parameters, this

technique requires high memory storage to store the precomputation table that contains all

the possible ordered sequences. Therefore, this attack was only applied on AES-192/256.

To reduce the high memory requirements of the MitM attack, new ideas were proposed

by Dunkelman, Keller, and Shamir at ASIACRYPT [63]. The first idea is to store the

multiset, as captured by Definition 7, instead of the ordered sequence. More specifically,

storing unordered sequence associated with its multiplicity, and using this idea, the memory

complexity was reduced by a factor of 4. The second idea, namely differential enumeration,

allows us to reduce the number of parameters from 24 to 16 by using truncated differential

with low probability. Utilizing these two ideas reduces the memory requirements from 2192 to

2128, but still not enough to attack AES-128. The consequence of using such low probability

truncated differential is that the data that are required to verify the distinguisher were

increased.

Definition 7 (Multisets of bytes) A multiset generalizes the set concept by allowing elements

to appear more than once. In our case, a multiset of 256 bytes can take as many as
(
28+28−1

28

)
≈

2506.17 different values.

24

Later on, AES-128 was attacked by Derbez, Fouque and Jean [58] utilizing ideas from

the rebound attack [104] that are based on the S-box differential property as captured by

Proposition 1. They showed that the number of parameters can be reduced from 16 to 10

byte parameters using the new idea that called efficient enumeration. Consequently, they

presented the most efficient attack on 7-round AES-128. Moreover, they presented a 9-round

attack on AES-256 using a 5-round distinguisher.

Proposition 1 (Differential Property of the S-box) Given two nonzero differences ∆i and

∆o in F16 or F256, the equation: S(x) + S(x+∆i) = ∆o has one solution on average. This

property also applies to S−1.

Finally, further reduction of the memory requirements was achieved by proposing a new

idea called key dependent sieving [91]. Using this idea Li, Jia and Wang presented 9-round

attack on AES-192 using a 5-round distinguisher. Then, Li and Jin [93] presented the first

6-round distinguisher on AES-256 that is used to present the first 10-round attack on AES-

256.

Since then, MitM has become one of the most powerful cryptanalysis techniques against

block ciphers. It was applied to SPN block ciphers such as Hierocrypt-3 [6], Hierocrypt-L1[8],

ARIA [11], and Kalyna [12]; and FN ciphers such as TWINE [34], Khudra [127], Piccolo [129],

CLEFIA [92], and Camellia [92].

2.3.14 Biclique Cryptanalysis

The biclique cryptanalysis was proposed by Bogdanov et al. [40] where they succeeded in

theoretically attacking the full-round AES block cipher. This technique consists of two parts:

building a biclique for some rounds of the block cipher at its beginning or end and applying

the MitM with re-computation technique on the remaining part of the block cipher. The

technique was inspired by the splice-and-cut technique and its general structure is depicted

in Figure 2.4. The attack works in the single-key setting and has two main parameters: the

length which denotes the number of rounds covered by the biclique and the dimension which

denotes the length of the biclique elements.

Here, we give a brief definition of biclques as applied to this class of attacks. Suppose we

have a sub-cipher FK which maps a plaintext P to intermediate state S in which we have 2d

plaintexts Pi and 2d intermediate states Sj connected by 22d keys K[i, j] as shown in Figure

2.5. A d-dimensional biclique is the tuple (Pi, Sj, K[i, j]) where the following relation holds:

Sj = FK[i,j](Pi); ∀i, j ∈ 0, ..., 2d−1

25

��������	�
�����

��

��

��

�

��

��

��

��

�

��

��

��

��

�

��

�������� �	
��

Figure 2.4: General structure of the biclique cryptanalysis

��

��

��

�

��

��

��

��

�

��

������

���
��

�����
��

����

Figure 2.5: d-dimensional biclique

This technique succeeds with probability 1 since all the key space is exhaustively tested.

The time complexity of this technique is given by:

2n−2d(Cbiclique + Cprecomp + Crecomp + Cfalsepos)

where Cbiclique is the time needed to construct the biclique, Cprecomp is the time required to

compute the elements affected by K1 or K2, Crecomp is the time required to compute the

elements affected by both K1 and K2, and Cfalsepos is the time needed to check the remaining

candidates after the matching.

2.3.15 Unbalanced Biclique Cryptanalysis

The original biclique attack succeeded in attacking the full-round versions of AES, i.e., AES-

128/192/256 [40]. However, its data complexity is very high not only for AES but also

when the attack is applied on other lightweight block ciphers such as LBlock [137] and

TWINE [49]. To address this issue, some ideas were proposed [48, 10, 38]. All these ideas

26

�

�� �� ��
��

���

������ ���
��

�����
��

����

Figure 2.6: Star biclique

focused on changing the structure of the biclique from balanced where the two sets Pi and Sj

of the biclique have the same cardinality 2d, to unbalanced biclique where the two sets have

different cardinality. An example of the unbalanced biclique is the star biclique in which one

of the sets has cardinality one. The star biclique was first proposed by Canteaut et al. [48].

They used the star biclique with the MitM attack to reduce the data complexity of the MitM

stage to a single plaintext/ciphertext pair [48].

The star biclique can be placed at the beginning or the end of the block cipher. For

simplicity and without loss of generality, we place it at the beginning of the block cipher. As

seen in Figure 2.6, we have only one plaintext P mapped to intermediate states Sl, where

l = 0, 1, ..., 22d − 1 and each l is equivalent to a unique i, j pair, where i, j take values from

0 to 2d − 1. Each Sl ≡ Si,j is obtained by partially encrypting P using key K[i, j]. Such

structure is called a star biclique with dimension d.

2.3.16 Invariant Subspace Cryptanalysis

Invariant subspace attack was first proposed by Leander et al. [86] at Crypto 2011 to crypt-

analyze the PRINTCIPHER block cipher. For simplicity and without loss of generality, assume

that we have an n-bit block cipher whose round function EK consists of a key addition

followed by an SP-layer E, such that Ek(x) = E(x+ k); and E has the following property:

E(U + c) = U + d,

where U is a subspace such that U ⊆ Fn
2 and c, d ∈ Fn

2 are two constants. Then, for the

round keys of the form k = u+ c+ d and u ∈ U , the following holds:

Ek(U + d) = E((U + d) + (u+ c+ d)) = E(U + c) = U + d,

i.e., the round function maps the affine subspace U + d onto itself. Consequently, if all the

round keys belong to the subspace U + c + d, then there exists a very efficient distinguisher

for a fraction of keys over any number of rounds. Consequently, for PRINTCIPHER-48 (resp.

27

PRINTCIPHER-96), there exist 252 weak keys out of 280 (resp. 2102 out of 2160 weak keys).

This attack requires 5 chosen plaintexts if the key belongs to the weak keys class which is

considered as a low data complexity attack.

Afterwards, a complete study of the attack against PRINTCIPHER was done by Bulygin

et al. [45]. Later, in Eurocrypt 2015, Leander et al. [87] proposed a generic algorithm to

detect the invariant subspaces and applied it on iSCREAM (one of the CAESAR competition

candidates), Robin (LS-design), and Zorro (a lightweight block cipher). Then, it was used

by Guo et al. [66] to present a full-round attack against Midori64. Finally, Grassi et al. [65]

proposed the subspace trail cryptanalysis, which can be considered as a generalization to the

invariant subspace attack in which they no longer rely on specific choices of round constants

or subkeys, and applied this technique on AES to present a 5-round distinguisher in the

single-key setting.

This attack can be avoided by carefully choosing the round constants, avoiding S-boxes that

map a subspace to itself, using non-linear elements in the key schedule, and using operations

with high diffusion rates.

28

Chapter 3

MitM Attacks on Khudra and Piccolo

3.1 Introduction

Recently, there has been a huge demand for deploying resource-constrained devices such as

RFID tags and wireless sensor nodes. To provide cryptographic security to such resource-

constrained devices, new block ciphers utilizing simple round functions, and modest or even

no key schedules are developed. As such, the design and analysis of hardware-oriented

lightweight block ciphers have become a very pressing task for the cryptographic community.

HIGHT [68], mCrypton [94], DESL/DESXL [88], PRESENT [41], KATAN/KTANTAN [46],

PRINTcipher [78], and Piccolo [116] are just few examples of such lightweight block ciphers

that are designed to be efficiently deployed on resource-constrained devices.

Khudra [82] and Piccolo [116] are hardware-oriented lightweight block ciphers.Both ciphers

operate on a 64-bit state with different key sizes. Their structure inherit the Generalized

Feistel Network (GFN) construction and has 4 branches, each of 16-bit length. They have

been analyzed extensively as exemplified in [101, 76, 142, 74, 136, 75, 118].

In this chapter, we investigate the security of Khudra and Piccolo against the MitM attack

based on the Demirci and Selçuk plain MitM approach. As mentioned in chapter 2, this

attack is based on finding a distinguisher that is evaluated offline independently of the key.

Then in an online phase, some rounds are appended before and after the distinguisher and

the correct key candidates for these rounds are checked whether they verify the distinguisher

property or not.

The rest of the chapter is organized as follows. Our attacks against 13 and 14 rounds of

Khudra are presented in section 3.2. In section 3.3, we provide the details of Our attacks on

14 rounds of Piccolo-80 and 16, 17 rounds of Piccolo-128. Finally, the chapter is concluded

in section 3.4.

29

3.2 Plain MitM Attack on Khudra

In this section, we present plain MitM attacks on 13 and 14 rounds of Khudra. In the attack

on 13 rounds, we first construct a 6-round distinguisher, append three rounds at the top

and four rounds at the bottom. To attack 14 rounds, the same distinguisher would require

the whole key to be guessed, therefore we construct a different 6-round distinguisher, and

append three rounds at the top and five rounds at the bottom. The time complexities of

these attacks are 266.11 to attack 13 rounds and 266.19 to attack 14 rounds, respectively. Both

attacks require the same data and memory complexities of 251 chosen plaintext and 264.8

64-bit blocks.

3.2.1 Specifications of Khudra

Khudra is an iterated lightweight block cipher that operates on 64-bit blocks using an 80-bit

key and employs a Generalized Feistel Structure (GFS). It has four branches of 16-bit each,

i.e., the state is divided into four words and each word is 16-bit long. The cipher iterates over

18 rounds where in every round, an unkeyed 16×16-bit F-function is applied on two words.

This unkeyed F-function, designed to be efficient when deploying Khudra on FPGAs, uses a

6-round GFS as depicted in the right side of Figure 3.1. Each round of these 6-round GFS

has two 4×4-bit S-boxes identical to the S-box used in PRESENT [41]. After applying the

F-functions of round i, two 16-bit round keys RK2i and RK2i+1 are XORed to the state along

with the other two words to generate the two new words of round i+ 1 for i = 0, 1, · · · , 17.

Additionally, two pre-whitening keys WK0 and WK1 are XORed with the plaintext before

the first round and two other post-whitening keys WK2 and WK3 are XORed with the

internal state after the last round and before generating the ciphertext.

The key schedule of Khudra takes an 80-bit master key K and splits it into five keys

ki of 16-bit each where K = k0||k1||k2||k3||k4. Then, it generates 16-bit 36 round keys

RKi, 0 6 i < 36, two per round, and four 16-bit whitening keys WKi, 0 6 i < 4, as shown in

Algorithm 4.

Algorithm 4: The Key Schedule employed in Khudra [82]

Data: Key Scheduling(k0, k1, k2, k3, k4)

Result: WKi, 0 6 i < 4 and RKi, 0 6 i < 36

WK0 ← k0,WK1 ← k1,WK2 ← k3,WK3 ← k4;

for i ← 0 to 35 do

RCi ← 0||i(6)||00||i(6)||0;

RKi ← ki mod 5 ⊕ RCi;

30

� �

��� ���

��� ���

� �
��� ���

� �
���� ����

� �
���� ����

��� ���

� �

� �

�
��
�
�
�
�
�

����������	����

���������	����

	

��
�
�
�
�
�

�	��� �	��� �	��� �	���

�	
��� �	
��� �	
��� �	
���

������

������

�������

�������

�	���� �	���� �	���� �	����

���� ���� ���� ����

���� ���� ���� ����

Figure 3.1: Structure of Khudra

The following notations will be used throughout the rest of this section:

- K: The master key.

- ki: The ith 16-bit of K, where 0 ≤ i < 5.

- RK i: The 16-bit key used in round ⌊i/2⌋.

- WKi: The 16-bit whitening key, where 0 ≤ i < 4.

- Xi: The 64-bit input to round i, where 0 ≤ i ≤ 18, X0 is the plaintext P and X18 is

the ciphertext C.

- Xi[l]: The lth 16-bit word of Xi, where 0 ≤ l < 4.

- ∆Xi, ∆Xi[l]: The difference at state Xi and word Xi[l], respectively.

- Xj
i : The jth state of the 64-bit input to round i.

- Xj
i [l]: The lth 16-bit word of the jth state of the 64-bit input to round i.

We measure the memory complexity of our attacks in number of 64-bit Khudra blocks and

the time complexity in terms of the equivalent number of round-reduced Khudra encryptions.

31

3.2.2 A MitM Attack on 13-Round Khudra

A b-δ-set (see Definition 6) is employed in our MitM attack where we set b = 3, i.e., 3 active

bits. b is chosen in order to reduce the memory and data requirements of the attack without

increasing its time complexity. In our 13-round attack, the active word is P [1], i.e., the second

word. The 3 active bits can take any position in this 16-bit word. Such 3-δ-set enables us to

build a 6-round distinguisher, as depicted in Figure 3.2, by the following proposition:

Proposition 2 Consider the encryption of 3-δ-set {P 0, P 1, ..., P 7} through six rounds of

Khudra. The ordered sequence [X0
6 [3]⊕X1

6 [3], X
0
6 [3]⊕X2

6 [3], ..., X
0
6 [3]⊕X7

6 [3]] is fully deter-

mined by the following 4 16-bit parameters, X0
1 [0], X

0
2 [0], X

0
3 [0] and X0

4 [0].

The above proposition means that we have 24×16 = 264 ordered sequences out of the

2(2
3−1)×16 = 2112 theoretically possible ones.

� �

� �

� �

� �

� �

���������	
������

����
�����������������������	���	������

��������������	��������	�	����

� �

���� ���� ���� ����

 ���� ����

 ���

 ����

 ����

 ����

 ����

 ���

 ����

 ����

 ����

 ����

 ����

 ���

 ����

 ����

 ����

 ����

 ����

 ���

 ����

 ����

 ����

 ����

Figure 3.2: 6-round distinguisher to attack 13-round Khudra

Proof. The knowledge of the 3-δ-set = {P 0, P 1, · · · , P 7} allows us to determine [P 0 ⊕

P 1, P 0 ⊕ P 2, · · · , P 0 ⊕ P 7]. In what follows we show how the knowledge of the 4 16-bit

32

parameters mentioned in Proposition 2 is enough to compute the ordered sequence of the

differences atX6[3]. As there is no F-function involved in the first round, the difference ∆P [1]

is propagated through the first round as is. The knowledge of X0
1 [0] enables us to bypass the

F-function of the second round to compute ∆X2[0]. Then, the knowledge of X0
2 [0] enables

us to bypass the F-function of the third round to compute ∆X3[0] and the previous steps

are repeated until we compute ∆X6[3]. It is to be noted that after the third (resp. fourth)

round, X3[3] (resp. X4[3]) should have non-zero difference because X2[0] (resp. X3[0]) has

non-zero difference. However, these differences are omitted from Figure 3.2 since they do not

impact the ordered sequence at X6[3].

The previous proposition is utilized to attack 13-round Khudra by appending 3 rounds on

top of it and 4 rounds below it, as illustrated in Figure 3.3. The attack has two phases and

proceeds as follows:

Offline Phase. Build the distinguisher property by determining all the 264 ordered sequences

as illustrated in Proposition 2 and save them in a hash table H .

Online Phase. As illustrated in Figure 3.3, the online phase advances as follows:

1. A plaintext P 0 is chosen to act as a reference to all the differences in the 3-δ-set.

2. The 3-δ-set P 0, P 1, · · · , P 7 is determined by guessing the state variables X0
1 [3], X

0
1 [1],

X0
1 [0], X

0
2 [2] to decrypt the 3-δ-set differences [X

0
3 [1]⊕X1

3 [1], X
0
3 [1]⊕X2

3 [1], · · · , X
0
3 [1]⊕

X7
3 [1]].

3. The corresponding ciphertexts C0, C1, · · · ,C7 are requested.

4. The differences in [X0
9 [3]⊕X1

9 [3], X
0
9 [3]⊕X2

9 [3], · · · , X
0
9 [3]⊕X7

9 [3]] are determined by

guessing the state variablesX0
9 [2], X

0
10[0], X

0
11[0], X

0
11[2], X

0
12[0], X

0
12[2] that are required

to decrypt the ciphertext differences [C0 ⊕ C1, C0 ⊕ C2, · · · , C0 ⊕ C7].

5. The guessed state variables are filtered by checking if the computed ordered sequence

exists in H or not.

Steps 2 and 4 require the guessing of 10 words and the attack time complexity would then

exceed the exhaustive key search. Therefore, we investigate the key schedule aiming to find

relations between the round keys and thus reduce the number of guessed words. Indeed, we

find that by guessing k0, k1, k3, and with the knowledge of P 0, we can compute X0
1 [3], X

0
1 [1],

X0
1 [0], X

0
2 [2] and by guessing k0, k3, k4, and with the knowledge of C0, C1, · · · , C7 and

[C0⊕C1, C0⊕C2, · · · , C0⊕C7], we can compute X0
9 [2], X

0
10[0], X

0
11[0], X

0
11[2], X

0
12[0], X

0
12[2].

Therefore, instead of guessing 10 words, only 4 key words k0, k1, k3, k4 are to be guessed.

33

��������	
��
��
����

� �

��� ���

��� ���

� �

� �

� �

� �

� �

� �
���� ����

��� ���

��� ���

��� ���

���� ����

���� ����

���� ����

�������

�������

�������

�������

��������

��������

��������

���
����������
�� ����
�����
��

� ����������������������������
��������������������

����� ����� ����� �����

 !�" !�" !�" !�"

�����

�����

�����

�����

�����

�����

�����

�����

����� ����� ����� �����

������ ������ ������ ������

������ ������ ������ ������

������ ������ ������ ������

������ ������ ������ ������

Figure 3.3: 13-round attack on Khudra

34

The probability of a wrong key resulting in an ordered sequence in H is 264−(7×16) = 2−48.

As we have 264 key guesses, we expect that only 264−48 = 216 keys will remain. Hence, we

guess k2 to fully recover the master key and test it using two plaintext/ciphertext pairs.

Attack Complexity. The memory complexity of the attack is determined by the memory

required to store the hash table H in the offline phase. This table has 264 entries where each

entry contains seven 16-bit words, i.e., 112 bits. Therefore, the memory complexity is given

by 264 × 112/64 = 264.8 64-bit blocks. The data complexity is determined from step 2. As

shown in Figure 3.3, after the decryption of step 2, three words are fully active, i.e., they

assume all the 216 possible values while the fourth word has only three active bits, i.e., assumes

23 possible values only in correspondence to the 3-δ-set. Therefore, the data complexity of

the attack is upper bounded by 251 chosen plaintext. The time complexity of the offline

phase is determined by the time required to build the hash table H and is estimated to be

264×8×4/(2×13) = 264.3. The complexity of the online phase includes the time required to

filter the key space and is estimated to be 264×8×(4+6)/(2×13) = 265.62. It also includes the

time to exhaustively search through the remaining key candidates along with the guess of k2

using two plaintext/ciphertext pairs and is estimated to be 2×2(64−48)×216 = 233. Therefore,

the overall time complexity of the attack is estimated to be 264.3+265.62+233 ≈ 266.11 13-round

Khudra encryptions.

3.2.3 A MitM Attack on 14-Round Khudra

Reusing the same distinguisher to extend our attack by one round requires guessing the 5

words of the key. Therefore, we construct another distinguisher, depicted in Figure 3.4, to

attack 14-round reduced Khudra without the post-whitening keys. The active word in this

new distinguisher is P [3]. It is built according to Proposition 3 below and, as in the previous

attack, b is set to 3.

Proposition 3 Consider the encryption of 3-δ-set {P 0, P 1, · · · , P 7} through six rounds of

Khudra. The ordered sequence [X0
6 [1] ⊕ X1

6 [1], X
0
6 [1] ⊕ X2

6 [1], · · · , X
0
6 [1] ⊕ X7

6 [1]] is fully

determined by the following 4 16-bit parameters X0
1 [2], X

0
2 [2], X

0
3 [2] and X0

4 [2].

By appending three rounds on top of this new distinguisher and five rounds beneath it,

we are able to attack 14-round Khudra. The attack proceeds as the previous one, as illus-

trated in Figure 3.5, with the exception that the active word is X3[3] rather than X3[1] in the

13-round attack and the ordered sequence is calculated at X9[1] instead of X9[3]. Guessing

k0, k1, k2 with the knowledge of P 0 enables us to compute the state variables needed to

determine the 3-δ-set. In order to determine the ordered sequence, we need to guess k0, k1,

35

� �

� �

� �

� �

� �

���������	
������

� �

���� ���� ���� ����

����� �����

� ���

�!���

�"���

�#���

�$���

� ���

�!���

�"���

�#���

�$���

�����

� ���

�!���

�"���

�#���

�$���

�����

� ���

�!���

�"���

�#���

�$���

����
�����������������������	���	������

���� ���������	��������	�	����

Figure 3.4: 6-round distinguisher to attack 14-round Khudra

k2, k4. Therefore, guessing the four key words, k0, k1, k2, k4 allows us to mount an attack on

14-round Khudra.

Attack Complexity. The memory and data complexities of this attack are similar to

the previous one, i.e., 264.8 64-bit blocks and 251 chosen plaintext, respectively. The time

complexity is 264 × 8 × 4/(2 × 14) + 264 × 8 × (4 + 8)/(2 × 14) + 2 × 2(64−48) × 216 =

264.19 + 265.78 + 233 ≈ 266.19 14-round Khudra encryptions.

3.3 Plain MitM Attack on Piccolo

In this section, we present plain MitM attacks on 14-round reduced Piccolo-80 and 16, 17-

round reduced Piccolo-128. In the attack on Piccolo-80, we first construct a 5-round distin-

guisher then append 4 rounds at its top and 5 rounds at its bottom. The time, data, and

memory complexities of the 14-round attack on Piccolo-80 are 275.39 encryptions, 248 chosen

plaintexts, and 273.49 64-bit blocks, respectively. To attack 16-round reduced Piccolo-128, we

build a 7-round distinguisher then append 3 rounds at its top and 6 rounds at its bottom.

36

��������	
��
��
����

� �

��% ��&

��% ��&

� �

� �

� �

� �

� �

��' ��(

��) ��*

��&+ ��&,

��'% ��'&

��'' ��'(

�������

�������

�������

�������

��������

��������

��������

���
����������
�� ����
�����
��

� ����������������������������
��������������������

� �
��') ��'*��������

� �
��'- ��'.

�/��� �/��� �/��� �/���

 !�" !�" !�" !�"

�0���

�1���

�0���

�1���

�0���

�1���

�0���

�1���

�2��� �2��� �2��� �2���

�/3��� �/3��� �/3��� �/3���

�//��� �//��� �//��� �//���

�/0��� �/0��� �/0��� �/0���

�/1��� �/1��� �/1��� �/1���

�/4��� �/4��� �/4��� �/4���

Figure 3.5: 14-round attack on Khudra

37

Table 3.1: Summary of the cryptanalysis results on Piccolo-80 (ID: Impossible Differential,
RK: Related-Key Setting Attack, SK: Single-Key Setting Attack, Pre: Pre-whitening Key,
Post: Post-whitening Key, CC: Chosen Ciphertext, CP: Chosen Plaintext, †: Requires the
full codebook or more)

Attack Setting # Rounds Pre/Post Time Data Memory Reference

ID RK 14 None 268.19 268.19† N.A. [106]

MitM SK 14 None 273 264† 25 [69]

ID SK 12 Pre 255.18 236.34 CC 263 [17]

ID SK 13 None 269.7 243.25 CP 262 [17]

MitM SK 14 None 275.39 248 CP 273.49 Sec. 3.3.2

Table 3.2: Summary of the cryptanalysis results on Piccolo-128 (ID: Impossible Differential,
RK: Related-Key Setting Attack, SK: Single-Key Setting Attack, Pre: Pre-whitening Key,
Post: Post-whitening Key, CP: Chosen Plaintext, †: Requires the full codebook or more)

Attack Setting # Rounds Pre/Post Time Data Memory Reference

ID RK 21 None 2117.77 2117.77† N.A. [106]

MitM SK 21 None 2121 264† 26 [69]

ID SK 15 Post 2125.4 258.7 CP 261 [17]

MitM SK 16 Post 2123 248 CP 2113.49 Sec. 3.3.3

MitM SK 17 Post 2126.87 248 CP 2125.99 Sec. 3.3.4

Extending the attack by one round using that 7-round distinguisher would require the whole

key to be guessed. Hence, we construct a 6-round distinguisher, append 4 rounds at its top

and 7 rounds at its bottom. The data complexity of both attacks on 16 and 17-round reduced

Piccolo-128 is 248 chosen plaintexts. The time, and memory complexities of the 16-round at-

tack on Piccolo-128 are 2123 encryptions, and 2113.49 64-bit blocks, respectively. The time,

and memory complexities of the 17-round attack on Piccolo-128 are 2126.87 encryptions, and

2125.99 64-bit blocks, respectively. Table 3.1 and 3.2 summarize our results and the previous

results on Piccolo-80 and Piccolo-128, respectively.

3.3.1 Specifications of Piccolo

The following notations are used throughout the rest of this section:

- a(b): A word a of length b bits.

- a||b: Concatenation of the two words a and b.

38

- at: Transposition of the vector or the matrix a.

- ab: Representation of the word a in base b.

- K: The master key.

- ki: The ith 16-bit of K from left, where 0 ≤ i < 5 in Piccolo-80 and 0 ≤ i < 8 in

Piccolo-128.

- rki: The 16-bit key used in round ⌊i/2⌋.

- wki: The 16-bit whitening key, where 0 ≤ i < 4.

- Xi: The 64-bit input to round i, where 0 ≤ i ≤ 26 in Piccolo-80 and 0 ≤ i ≤ 32 in

Piccolo-128, X0 is the plaintext P and X26 or X32 is the ciphertext C in Piccolo-80 and

Piccolo-128, respectively.

- Xi[j]: The jth nibble of Xi, where 0 ≤ j < 16.

- Xi[j : l]: The nibbles from j to l of Xi, where j < l.

- Xi[j, l]: The nibbles j and l of Xi.

- ∆Xi, ∆Xi[j]: The difference at state Xi and nibble Xi[j], respectively.

- Xj
i : The jth state of the 64-bit input to round i.

There are two versions of Piccolo, depending on the key size, Piccolo-80 for 80-bit keys

and Piccolo-128 for 128-bit keys. There are two differences between Piccolo-80 and Piccolo-

128, the first is the number of rounds. Piccolo-80 iterates over 25 rounds, while Piccolo-128

runs 31 rounds. Piccolo’s design employs a Generalized Feistel Network (GFN) structure

and its internal state is divided into 4 words each of 16-bit length, i.e., we have 4 branches

as shown in Figure 3.6. Therefore, each round has two Feistel Networks (FN). Each FN

has two operations: an F-function (F) and an Add key (AK). The F-function is an unkeyed

16× 16-bit function and is applied to the first branch of the FN and, as depicted in the right

part of Figure 3.6, consists of three transformations [116]:

1. First S-box layer: A nonlinear layer that applies the same 4×4-bit bijective S-box S to

the 16-bit X(16) = x0(4)||x1(4)||x2(4)||x3(4) data of the first branch of the FN as follows:

(x0(4), x1(4), x2(4), x3(4)) ← (S(x0(4)), S(x1(4)), S(x2(4)), S(x3(4)))

39

2. Diffusion layer: The internal state is multiplied by a matrix M, where the multiplication

is performed over GF (24) defined by the irreducible polynomial x4 + x+1. Hence, the

output of the first S-box layer is updated as follows:

(x0(4), x1(4), x2(4), x3(4))
t ← M.(x0(4), x1(4), x2(4), x3(4))

t,

3. Second S-box layer: It resembles the first S-box layer but applied to the output of the

diffusion layer.

Each round of Piccolo contains two round keys used in the two FNs. Moreover, there are

two pre-whitening keys wk0, wk1 that are xored with the internal state before the first round

and two post-whitening keys wk2, wk3 that are xored with the internal state after the last

round. After applying the two FN operations in each round, a permutation is performed on

the byte level, as shown in Figure 3.6.

5 6 7 8

�

67 68 69 6:

�

��;��<

� �

��=��>

� �

��>?@=��>?@A

� �

��>?@;��>?@>

��B

��C

�

�

�

�

�

�

�

�

�

6D
9

9

9

9

6D

������	
��

�����	
�������	
��

9 : D E F G 65 66

�

�

Figure 3.6: Structure of Piccolo

The key schedule takes an 80-bit master keyK in Piccolo-80 such thatK = k0||k1||k2||k3||k4

or an 128-bit master key K in Piccolo-128 such that K = k0||k1||k2||k3||k4||k5||k6||k7 and gen-

erates the 4 16-bit whitening keys wki, 0 ≤ i < 4 and 50 16-bit round keys in Piccolo-80, as

per Algorithm 5 or 62 16-bit round keys in Piccolo-128, as per Algorithm 6.

40

Algorithm 5: The Key Schedule employed in Piccolo-80 [116]

Data: Key Scheduling(k0, k1, k2, k3, k4)

Result: wki, 0 6 i < 4 and rki, 0 6 i < 50

wk0 ← kL
0 ||k

R
1 , wk1 ← kL

1 ||k
R
0 , wk2 ← kL

4 ||k
R
3 , wk3 ← kL

3 ||k
R
4 ;

for i ← 0 to 24 do

(rk2i, rk2i+1) ← (con80
2i , con

80
2i+1)⊕

(k2, k3) if i mod 5 = 0 or 2

(k0, k1) if i mod 5 = 1 or 4

(k4, k4) if i mod 5 = 3,

Algorithm 6: The Key Schedule employed in Piccolo-128 [116]

Data: Key Scheduling(k0, k1, k2, k3, k4, k5, k6, k7)

Result: wki, 0 6 i < 4 and rki, 0 6 i < 62

wk0 ← kL
0 ||k

R
1 , wk1 ← kL

1 ||k
R
0 , wk2 ← kL

4 ||k
R
7 , wk3 ← kL

7 ||k
R
4 ;

for i ← 0 to 61 do

if (i+ 2)mod8 = 0 then

(k0, k1, k2, k3, k4, k5, k6, k7) ← (k2, k1, k6, k7, k0, k3, k4, k5);

rki ← k(i+2)mod8 ⊕ con128
i ,;

In both algorithms, kL
i and kR

i are the left and right half byte of ki. In Algorithm

5, (con80
2i ||con

80
2i+1) is calcualted as (con80

2i ||con
80
2i+1) ← (ci+1||c0||ci+1||002 ||ci+1||c0||ci+1) ⊕

0f1e2d3c16, where ci is a 5-bit representation of i. In algorithm 2, we have (con128
2i ||con128

2i+1) ←

(ci+1||c0||ci+1||002||ci+1||c0||ci+1)⊕ 6547a98b16.

We measure the memory complexity of our attacks as 64-bit Piccolo blocks and the time

complexity in terms of the equivalent number of reduced-round Piccolo encryptions.

3.3.2 A MitM Attack on 14-Round Piccolo-80

In Piccolo, by noting that when the δ-set (see Definition 5) is chosen at the second input

branch of the FN and the corresponding ordered sequence is evaluated at its first output

branch, a distinguisher that minimizes the number of parameters can be constructed. How-

ever, such distinguisher does not lead to the best attack on Piccolo-80 since it can be extended

upwards in the plaintext direction by two rounds only. If a third round is appended, the full

codebook is needed due to the diffusion transformation utilized in Piccolo. Hence, to increase

the number of rounds appended on top of the distinguisher, the δ-set is chosen at the first

41

(instead of the second) input branch of the FN which, unfortunately, increases the number of

parameters by two additional parameters. Then, in order to reduce the number of parame-

ters, we exploit the properties of the diffusion operation M. In particular, we choose the δ-set

to be after the first S-box layer of the first F-function such that after the diffusion transfor-

mation, only two nibbles are active, as shown in Figure 3.7. By enumerating all the possible

values of three active input nibbles of the linear diffusion, it was found that such δ-set that

has three active nibbles at the input of the linear transformation, and two active nibbles at

its output contains 15 differences. Such δ-set enables us to build a 5-round distinguisher and

overcome the problem of the two additional parameters when the δ-set is chosen at the first

branch of the FN, as depicted in Figure 3.7, and captured by the following proposition:

Proposition 4 Consider the encryption of a δ-set {Y 0 = P ′0[0 : 3]||P 0[4 : 15], Y 1 = P ′1[0 :

3]||P 1[4 : 15], · · · , Y 15 = P ′15[0 : 3]||P 15[4 : 15]} through 5 rounds of Piccolo. The ordered

sequence [X0
5 [14 : 15]⊕X1

5 [14 : 15], X0
5 [14 : 15]⊕X2

5 [14 : 15], · · · , X0
5 [14 : 15]⊕X15

5 [14 : 15]

is fully determined by the following 5 16-bit parameters, X0
0 [0 : 3], X0

1 [8 : 11], X0
2 [0 : 3],

X0
2 [8 : 11] and X0

3 [0 : 3].

The above proposition means that we have 25×16 = 280 ordered sequences out of the

215×8 = 2120 theoretically possible ones.

Proof. The knowledge of the δ-set = {Y 0, Y 1, · · · , Y 15} allows us to determine [Y 0 ⊕

Y 1, Y 0⊕Y 2, · · · , Y 0⊕Y 15]. In the sequel, we show that the ordered sequence atX5[14 : 15] can

be determined uniquely by the knowledge of the 5 16-bit parameters mentioned in Proposition

4. As the δ-set is chosen at the input of the linear transformation M, it has to be propagated

forward through M and backward through the first S-box layer to be able to determine

the difference ∆X1[6 : 7, 10 : 11, 13]. To do this, we need to know three nibbles after the

first S-box layer and two nibbles before the second S-box layer of the first F-function in

the first round. However, the knowledge of only 4 nibbles X0
0 [0 : 3] suffices to bypass the

F-function and to compute ∆X1[6 : 7, 10 : 11, 13]. It is to be noted that only two nibbles are

active after the F-function due to the restriction we place on the choice of our δ-set. Then,

we bypass the second round by the knowledge of X0
1 [8 : 11] which allows us to compute

∆X2[2 : 3, 8 : 11, 14 : 15]. By repeating the previous steps and propagating the differences

further, ∆X5[14 : 15] is computed. It is worth noting that there are nibbles which should

have difference but appear in Figure 3.7 as if they do not have any difference, because their

knowledge do not impact the computation of the ordered sequence at X5[14 : 15]. For

instance, after the third (resp. fourth) round, the difference at X3[8 : 11] (resp. X4[0 : 1])

should be non-zero because the difference at X2[2 : 3, 8 : 11] (resp. X3[0 : 3]) is non-zero.

42

� �

� �

� �

� �

� �

�

�

�

�

�

�

�

�

�

���������	
������

����
�����������������������	���	������

��������������	��������	�	����

�

�H

�I

�J

�K

�L

���� ���� ���� ����
�����

�����

�����

�����

����

����

����

����

Figure 3.7: 5-round distinguisher to attack 14-round Piccolo-80

In what follows we show how to utilize the above described distinguisher to attack 14-round

Piccolo-80 starting from the 5th round (round 4) till the 18th round (round 17) without the

pre-whitening or the post-whitening keys. The attack relies on the previous proposition and

exploits the linearity of the key schedule to build a 5-round distinguisher and then append 4

rounds above it and 5 rounds below it, as seen in Figure 3.8. The attack has two phases as

follows:

Offline Phase. As demonstrated in Proposition 4, we determine all the 280 ordered sequences

and store them in a hash table H .

Online Phase. The online phase, as seen in Figure 3.8, proceeds as follows:

1. A plaintext P 0 is chosen as a reference to all the differences in the δ-set.

2. The δ-set P 0, P 1, · · · , P 15 is determined by guessing the state variables X0
6 [8 : 11],

X0
6 [6 : 7, 12 : 13], X0

6 [4 : 5, 14 : 15], and X0
8 [1 : 3] to decrypt the δ-set differences.

3. The corresponding ciphertexts C0, C1, · · · , C15 are requested.

43

���������	
�	���	
��

�MN

�MO

�MP

�MQ

�MR

� �

� �

� �

� �

�

�P

�Q

�R

�S

� �

� �

� �

� �

� �

�

��T
U
����V

W
��V

U
����T

W

��MM��MX

��MN��MY

��MO ��MP

��YQ ��YR

��YS ��YZ

��NX ��NM

��NY ��NN

��NO ��NP

���	
��
	��

� �����������������
��������
	��������
������������

�������

�������

�������

�������

�������

��������

��������

��������

��������

Figure 3.8: 14-round attack on Piccolo-80

44

4. The ordered sequence differences [X0
13[14 : 15] ⊕ X1

13[14 : 15], X0
13[14 : 15] ⊕ X2

13[14 :

15], · · · , X0
13[14 : 15] ⊕ X15

13 [14 : 15]] are determined by guessing the state variables

X0
13[8 : 11], X0

14[0 : 3], X0
14[8 : 11], X0

15[0 : 3], X0
15[8 : 11], X0

16[0 : 3], X0
16[8 : 11] that are

required to decrypt the ciphertext differences [C0 ⊕ C1, C0 ⊕ C2, · · · , C0 ⊕ C15].

5. The guessed state variables are filtered by checking if the computed ordered sequence

exists in H or not.

The evaluation of the δ-set and the corresponding ordered sequence as demonstrated in

steps 2 and 4 require the guessing of 43 internal state nibbles. Guessing these 43 internal

state nibbles makes the attack complexity exceeds the exhaustive search. Therefore, we an-

alyze the key schedule searching for relations between the round keys to reduce the number

of guessed parameters. As a result, we find that starting the attack from the 5th round, i.e.,

round 4 is the best choice to reduce the number of the guessed parameters. Indeed, by only

guessing k0, k1, k2, k3 and with the knowledge of P 0, we are able to compute X0
6 [8 : 11],

X0
6 [6 : 7, 12 : 13], X0

6 [4 : 5, 14 : 15], and X0
8 [1 : 3]. The knowledge of [C0, C1, · · · , C15],

[C0 ⊕ C1, C0 ⊕ C2, · · · , C0 ⊕ C15] and the same keys guessed above enables us to evaluate

the state variables X0
13[8 : 11], X0

14[0 : 3], X0
14[8 : 11], X0

15[0 : 3], X0
15[8 : 11], X0

16[0 : 3],

X0
16[8 : 11]. Consequently, we have to guess 4 round keys (16 nibbles) instead of guessing 43

internal state nibbles. Moreover and in order to reduce the memory complexity of the attack

even further, we choose to compute the ordered sequence at only 6-bit instead of 8-bit, where

any arbitrary 6-bit from the 8-bit can be chosen. Therefore, the probability of a wrong key

to be a key candidate is 280−(15×6) = 2−10. As we have 264 keys to be guessed, we expect that

only 264−10 = 254 keys to remain after step 5. Hence, to recover the master key we guess k4

and test the 254 key candidates along with k4 with just two plaintext/ciphertext pairs.

Attack Complexity. The memory complexity is determined by the size of the hash table

H created in the offline phase. This table contains 280 ordered sequences, where each ordered

sequence has 15 6-bit differences. Therefore, the memory complexity is 280 × 90/64 = 280.49

64-bit blocks. To reduce the memory complexity below 280, we use a simple tradeoff and

store a fraction 1/α of H and repeat the attack α times as now we have decreased the chance

to hit one element in H . We choose α = 27 to reduce the memory complexity while still

having a non-marginal time complexity. Hence, the memory complexity of the attack is

273.49. As depicted in Figure 3.8, we shift the round keys rk8, rk9 from the 5th round to the

6th round. This round keys shift enable us to append 4 rounds, and not just 3 rounds, on

top of our 5-round distinguisher with the same data complexity and without requiring the

full codebook. To illustrate how this is possible, we choose our plaintexts such that after

the 5th round the words X5[2 : 3, 8 : 9] take a fixed value while the remaining words of X5

45

take all the possible values. Hence, the data required can be formed using one structure

that contains 248 states of X5. In order to obtain its corresponding plaintexts, we simply

decrypt this structure as no keys are involved in this round any more. Accordingly, the data

complexity is upper bounded by 248 chosen plaintexts. Repeating the attack 27 times does

not increase the data complexity as we just choose a different reference plaintext P 0. The

time complexity of the offline phase is determined by the time needed to build the hash table

H that now contains 273, instead of 280, ordered sequences. Therefore, the time complexity

of the offline phase is 273 × 16 × 5/(2 × 14) = 274.51. The time complexity of the online

phase consists of two parts: the time required to filter the key space which is estimated to

be 27 × 264 × 16 × (6 + 9)/(2 × 14) = 274.1 and the time to recover the master key which is

estimated to be 2 × 2(64−10) × 216 = 271. Hence, the total time complexity of the attack is

274.51 + 274.1 + 271 ≈ 275.39 14-round Piccolo-80 encryptions.

3.3.3 A MitM Attack on 16-Round Piccolo-128

Reusing the ideas of the attack on Piccolo-80 does not lead to the best attack on Piccolo-

128 because the key schedule of the latter is different. Therefore, we use the key dependent

sieving technique in order to build a longer distinguisher with the least number of parameters.

As depicted in Figure 3.9, we construct a 7-round distinguisher, that we employ to attack

16-round Piccolo-128 from the 2nd round (round 1) to the 17th round (round 16) with the

post-whitening keys. The δ-set of our 7-round distinguisher is chosen to be active at P [7]

and our distinguisher is built using Proposition 5.

Proposition 5 Consider the encryption of a δ-set {P 0, P 1, · · · , P 15} through 7 rounds of

Piccolo. The ordered sequence [X0
7 [13 : 15]⊕X1

7 [13 : 15], X0
7 [13 : 15]⊕X2

7 [13 : 15], · · · , X0
7 [13 :

15]⊕X15
7 [13 : 15]] is fully determined by the following 8 16-bit parameters X0

1 [8 : 11], X0
2 [0 : 3],

X0
2 [8 : 11], X0

3 [0 : 3], X0
3 [8 : 11], X0

4 [0 : 3], X0
4 [8 : 11] and X0

5 [0 : 3].

The previous 5-round distinguisher of our attack on 14-round Piccolo-80 is independent of

the round keys while our 7-round distinguisher that we utilize to attack 16-round Piccolo-128

uses the round keys to reduce the number of parameters. Assuming that we know the internal

state X0
3 , i.e., 4 parameters, and the round keys rk6, rk7, we can evaluate X0

4 . Therefore, the

6 F-functions from the third round to the fifth round of the distinguisher can be bypassed.

To bypass the other two F-functions, we need to know rkL
4 , rk

R
5 , rk

L
8 , and rkR

9 only. If rk4,

rk8 depend on the same ki and rk5, rk9 rely on the same kj then we can bypass the other

two F-functions by guessing only kL
i , and kR

j . In such case, we can bypass the 8 F-functions

of our 7-round distinguisher by guessing 7 parameters only. By placing our distinguisher to

cover from the 5th round (round 4) to the 11th round (round 10), the number of parameters

46

� �

� �

� �

� �

� �

���������	
������

����
�����������������������	���	������

��������������	��������	�	����

�

�[

�\

�]

�^

�_

� �

�`

� �

�a

��b ��[

��\ ��]

��^ ��_

��` ��a

��c ��d

��[b ��[[

��[\ ��[]

Figure 3.9: 7-round distinguisher to attack 16-round Piccolo-128

in Proposition 5 is reduced to 7 parameters only. In that case, ki is k4 and kj is k5 and the

7 16-bit parameters of our distinguisher are the state X0
7 , k1, k6, k

L
4 , and kR

5 . Our 16-round

attack is then built by appending 3 and 6 rounds at the top and the bottom of our 7-round

distinguisher, respectively. As shown in Figure 3.10, the attack follows the same steps as the

previous attack on Piccolo-80 while considering the new position of the δ-set at X4[7] and the

different position of the corresponding ordered sequence at X11[13 : 15]. In the online phase,

the knowledge of P 0 and the guessing of k4, k5, k
L
6 , and kR

7 enable us to partially decrypt

X4[7] and determine the δ-set. From the other direction, by the knowledge of [C0, C1, · · · ,

C15], [C0 ⊕ C1, C0 ⊕C2, · · · , C0 ⊕ C15] and the guessing of k0, k1, k2, k
R
3 , k5, k6, and k7, we

can compute the ordered sequence at X11[13 : 15]. Hence, in total we need to guess seven

and half keys, i.e., k0, k1, k2, k
R
3 , k4, k5, k6, and k7, in order to mount our attack on 16-round

Piccolo-128.

Attack Complexity. The memory complexity is estimated to be 27×16 × (15 × 12)/64 ≈

2113.49 64-bit blocks and the data complexity is 248 chosen plaintexts. The time complexity is

47

���������	
�	���	
��

�ee

�ef

�eg

�eh

�ei

� �

� �

� �

� �

�

�f

�g

�h

� �

� �

� �

� �

��i��h

��j��k

��ff ��fg

��fh ��fi

��fk ��fj

��fl ��fm

��gn ��ge

����	
��	��

� ���
����
������
	��
������	���
����
	�
��
�������

�ek

� �

�

��gf ��gg

�����
�

�����
�

�����
�

�����
��

�����
��

�����
��

�����
��

�����
��

�����
�

Figure 3.10: 16-round attack on Piccolo-128

2112×16×8/(2×16)+2120×16×(5+11)/(2×16)+2×2(120−68)×28 = 2114+2123+261 ≈ 2123

16-round Piccolo-128 encryptions.

3.3.4 A MitM Attack on 17-Round Piccolo-128

To extend the attack on Piccolo-128 by one more round, we have to build another dis-

tinguisher, as illustrated in Figure 3.11 because using the previous 7-round distinguisher

requires the guessing of the whole key space. Using this new 6-round distinguisher, which

needs 8 parameters, we attack 17-round Piccolo-128 from the 5th round (round 4) to the

21st round (round 20) with the post-whitening keys. We append 4 and 7 rounds at the top

and the bottom of our 6-round distinguisher, respectively. To launch the attack on 17-round

48

� �

� �

� �

� �

� �

���������	
������

����
�����������������������	���	������

�������������������	������	��	���	����

�

�o

�p

�q

�r

�s

� �

�t

Figure 3.11: 6-round distinguisher to attack 17-round Piccolo-128

Piccolo-128, we need to guess seven and half keys, as shown in Figure 3.12. These keys

are kR
0 , k1, k2, k3, k4, k5, k6, k7. The attack procedure follows the same steps of the previous

attacks.

Attack Complexity. The memory complexity is estimated to be 28×16 × (15 × 12)/64 ≈

2129.49 64-bit blocks. Since the memory complexity exceeds 2128, we store a fraction 1/α of

the hash table H . α = 23.5 is chosen so that the memory complexity does not exceed 2128

while having a non-marginal time complexity. Therefore, the memory complexity is 2125.99

64-bit blocks. The data complexity is 248 chosen plaintexts. Regarding the time complexity,

since we store a fraction of the hash table, we have to repeat the online attack 23.5 times. The

time complexity of the offline phase is estimated to be 2128−3.5×16×8/(2×17) ≈ 2126.41. We

use the partial computation technique in order to reduce the time complexity of the online

phase. First, guessing the keys kR
0 , k

L
3 , k6, k7 enables us to identify the δ-set and the time of

this step is evaluated to be 248× 16× 5/(2× 17) ≈ 249.23. By guessing k4, k5 we can partially

decrypt through round 20 and this step is estimated to be 280 × 16 × 2/(2 × 17) ≈ 279.91.

Then, guessing k2 enables us to compute the output of the first F-function in round 19 and

is estimated to be 296 × 16× 1/(2× 17) ≈ 294.91. Afterwards, guessing k1 enables us to par-

tially decrypt through round 19 and 18 as well as the first F-function of round 17 and needs

49

2112 × 16× 4/(2× 17) ≈ 2112.91 encryptions. Finally, guessing kR
3 enables us to compute the

ordered sequence and this step needs 2120×16×6/(2×17) ≈ 2121.5 encryptions. Accordingly,

the time complexity of the online phase is 249.23 + 279.91 + 294.91 + 2112.91 + 2121.5 ≈ 2121.5 and

it will be repeated 23.5 times so, all in all, it is estimated to be 2125. Recovering the master

key using two plaintext/ciphertext pairs requires 2 × 2120 × 2128−180 × 28 = 277. The total

time complexity of the attack is 2126.41 + 2125 + 277 ≈ 2126.87 encryptions.

3.4 Conclusion

In this chapter, we presented MitM attacks on Khudra. The time complexities of the attacks

are given by 266.11 and 266.19 for the 13-round and 14-round reduced cipher, respectively. Both

attacks have the same data and memory complexities of 251 chosen plaintext and 264.8 64-bit

blocks, respectively. Then, we presented MitM attacks on 14-round reduced Piccolo-80 and

16, 17-round reduced piccolo-128. All these attacks on Piccolo-80 and Piccolo-128 require the

same data complexity of 248 chosen plaintexts. The time complexities of the MitM attacks

on 14-round Piccolo-80 and 16, 17-round Piccolo-128 are 275.39, 2123, and 2126.87, respectively.

Their memory complexities are 273.49, 2113.49, and 2125.99 for the 14-round Piccolo-80 and 16,

17-round Piccolo-128, respectively.

50

���������	
�	���	
��

�uv

�uw

�ux

�uy

�uz

� �

� �

� �

� �

�

�w

�x

�y

� �

� �

� �

��uu��u{

��u|��u}

��}z ��}~

��|{ ��|u

��|} ��||

����	
��	��

� ���
����
������
	��
������	���
����
	�
��
�������

� �

�

��|z ��|~
� �

��|x ��|y

�}{

� �

��|v ��|w

�u~

� �
��uw��uv

�z

��v{ ��vu

�����
�

�����
�

�����
�

�����
�

�����
��

�����
��

�����
��

�����
��

�����
�

�����
�!

�����
"#

Figure 3.12: 17-round attack on Piccolo-128

51

Chapter 4

A MitM with Efficient Enumeration

Attack on Kiasu-BC

Kiasu-BC is a recently proposed tweakable variant of the AES-128 block cipher. The de-

signers of Kiasu-BC claim that no more than 7-round Meet-in-the-Middle (MitM) attack can

be launched against it. In this chapter, we present a MitM attack, utilizing the efficient

enumeration technique, on the 8-round reduced cipher. The attack has time complexity

of 2116 encryptions, memory complexity of 286 128-bit blocks, and data complexity of 2116

plaintext-tweak combinations.

4.1 Introduction

Different from traditional block ciphers, a tweakable block cipher [96] has an additional input

called a tweak. Varying this tweak allows the choice of different specific keyed instances

of the cipher. Tweakable ciphers are designed such that changing the tweak can be done

very efficiently compared to the key setup operation, which allows new interesting modes of

operation and applications to become possible. Recently, the TWEAKY framework [72] was

proposed by Jean et al. at AsiaCrypt 2014. In the extended version of [73], the authors

proposed three specific instances of tweakable block ciphers including Kiasu-BC, which has

also been used as a building block for the authenticated encryption scheme Kiasu [71] that

was submitted to the CAESAR competition. Kiasu-BC is a tweakable version of AES-128

which has an additional 64-bit input tweak where, as shown in Figure 4.1, the tweak is added

to the first two rows of every round key. Except for the tweak addition to the round keys,

Kiasu-BC has the same specifications of AES-128. In [72, 73], the designers of Kiasu-BC

claim that the 7-round Meet-in-the-Middle (MitM) attack against AES-128 is also applicable

on Kiasu-BC without any extra rounds.

52

���

���� ���� ��������

���� ���� ��������

� � ��

� � ��

� ��

Figure 4.1: Tweak addition to the round key in Kaisu-BC, where RKi is the AES-128 key of
round i− 1

In this chapter, we present a MitM attack on 8-round reduced version of Kiasu-BC, which

contradicts the designers’ claim. Our attack is based on the MitM with efficient enumeration

and b-δ-set techniques [58, 67]. Using the additional degree of freedom available because of

the ability to choose the tweak, we are able to extend the 4-round distinguisher of AES-128

to 5-round distinguisher against Kiasu-BC. Then, by appending one round above and two

rounds below the distinguisher, we launch an attack against the 8-round reduced cipher.

The rest of the chapter is organized as follows. Section 4.2 provides the notations used

throughout the chapter and a brief description of Kiasu-BC. In section 4.3, we present our

attack on 8 rounds of Kiasue-BC. Finally, the chapter is concluded in section 4.4.

4.2 Specifications of Kiasu-BC

Kiasu-BC is a tweakable block cipher presented in [72, 73]. Then it was used as a building

block for the authenticated encryption Kiasu [71] that was submitted to the CAESAR com-

petition. Kiasu-BC accepts 128-bit plaintext blocks, 128-bit key and a 64-bit public tweak

T .

As mentioned above, the specification of Kiasu-BC is essentially identical to AES-128,

except that T is XORed to the first two rows of every round key. When T = 0, Kiasu-BC is

equivalent to AES-128. In other words, apart from the tweak, it has the same specifications

as AES-128. Similar to AES-128, each round of Kiasu-BC has four operations: SubBytes

(SB), ShiftRows (SR), MixColumns (MC) and AddRoundTweakKey (ATK). In what follows,

we give a brief description of these operations:

- SubBytes (SB): A nonlinear byte bijective mapping.

- ShiftRows (SR): Rotation of row i of the state, 0 ≤ i ≤ 3, to the left by i bytes.

- MixColumns (MC): Each column of the state is multiplied by MDS matrix to obtain

the corresponding column.

53

- AddRoundTweakKey (AK) : At round i, the state is XORed with the 128-bit round

key RKi and 128-bit τ , such that the first two rows contain the 64-bit tweak T and the

other two rows contain zero values. Note that, ki = RKi ⊕ τ .

An initial AddRoundTweakKey operation is applied prior to the first round and the Mix-

Column operation in the last round is omitted. In our attack, we use the differential property

of the S-box (see Proposition 1). For further details regarding the block cipher specification,

the reader is referred to [72, 73].

The following notation is used throughout the remaining of this chapter:

- xi: The 16-byte state before the SB operation at round i.

- yi: The 16-byte state before the SR operation at round i.

- zi: The 16-byte state before the MC operation at round i.

- wi: The 16-byte state before the ATK operation at round i.

- ki: The XOR value of the round key and the tweak at round i− 1.

- xj
i : The state at round i whose position within a set or a sequence is given by j.

- xi[j]: The jth byte of the state xi, where j = 0, 1, · · · , 15.

- xi[j, l]: The bytes j and l of xi.

- ∆xi, ∆xi[j]: The difference at state xi, and byte xi[j], respectively.

The memory complexity of our attack is given in 128-bit blocks and the time complexity

is evaluated in reduced round Kiasu-BC encryptions.

4.3 A MitM Attack on 8-Round Kiasu-BC

In our MitM attack, we utilize a b-δ-set (see Definition 6) to reduce the memory complexity

where we set b = 5. The distinguisher is employed in the middle 5 rounds from round 1 to 5

such that the b-δ-set is presented at w0[0], the ordered sequences are observed at x6[0]. By

utilizing a similar idea to the one presented in [62], we are able to extend the distinguisher

from 4 rounds (on AES-128) to 5 rounds on Kiasu-BC by exploiting the freedom in the choice

of the tweak. In our distinguisher, the difference in the tweak is chosen at byte 0 and is set

equal to the b-δ-set such that the difference at x1 after the AddRoundTwekKey operation is

0, as illustrated in Figure 4.2. Proposition 6, below, is the core of our attack.

54

Proposition 6 If a message m belongs to a pair of states conforming to the distinguisher

of Figure 4.2, then the ordered sequences of differences ∆x6[0] obtained from the b-δ-set

constructed from m in w0[0] are fully determined by the following one 5-bit and 10 bytes:

∆w0[0], x2[0], x3[0, 1, 2, 3], y5[0, 5, 10, 15], and ∆x6[0].

Proof. The proof is based on the efficient enumeration technique [58]. In the following we

will show how the knowledge of one 5-bit and 10 bytes is enough to propagate the b-δ-set

at w0 and compute the ordered sequences at x6. Let (m,m′) be a right pair that conforms

to the distinguisher in Figure 4.2. Since ∆w0[0] = ∆k1[0], then ∆x1[0] = 0. Also, since

∆k2[0] = ∆k1[0], then ∆x2[0] = ∆w0[0]. The knowledge of x2[0] allows us to determine

∆y2[0]. Then ∆y2[0] can be propagated through the following linear operations: SR, MC

and ATK to compute ∆x3[0, 1, 2, 3]. With the knowledge of x3[0, 1, 2, 3], we can bypass the

non-linear operation SB and then linearly we can forward the knowledge through SR, MC,

and ATK to get ∆x4. Similarly, in the backward direction, we propagate ∆x6[0] linearly

through ATK, MC−1 and SR−1. Then, the knowledge of y5[0, 5, 10, 15] allows us to bypass

the SB−1 to get ∆x5[0, 5, 10, 15] that can be propagated backward linearly through ATK,

MC−1, and SR−1 to compute ∆y4. Using the differential property of the S-boxes, the state

x4 has one solution, on average.

Attack Procedure: In what follows, we show how we can launch an 8-round attack on

Kiasu-BC using the above distinguisher. The attack is constructed by appending one round

on the top of the distinguisher and two rounds beneath it. The attack has two phases, namely

the precomputation phase and the online phase.

Precomputation Phase. In this phase, we iterate over the 210×8+5 = 285 possible val-

ues for the one 5-bit and 10 bytes in Proposition 1, and for each of them we deduce the

internal state variable x4. Then, we build the table and in each entry we store the ordered

sequences computed at x6[0]. Therefore, we have 285 ordered sequences out of the 232×8=256

theoretically possible ones.

Online Phase. This phase is decomposed of two steps. The first step is the data col-

lection in which we collect many pair of messages to guarantee that one of them confirm to

the truncated differential characteristic in Figure 4.2. The second step is the key recovery in

which the collected data pairs are used to create the b-δ-set to compute the ordered sequences

in the online phase and compare it with precomutation table to identify the key candidates.

Data Collection. This type of the MitM attacks operates in the chosen plaintext model.

55

��

�� �� ���

� �

�

��

�� �� ��

�

�

�� �� 	�
�

��

�� �� ��

�� �� 	�
�

��

�� �� ��

�� �� 	�
�

��

�� �� ��

�� �� 	�
�

��

�� �� ��

�� �� 	�
�

��

�� �� ��

�� �� 	�
�

��

�� ��

�� �� 	�

��

�

�� �� 	�
�

�

�

�

�

�

�

�

�

�

�

�

��

��

��

��

��

��

����������

��

��

Figure 4.2: A MitM attack on 8-round Kiasu-BC

56

To reduce the number of required chosen plaintexts and get enough pairs to launch the at-

tack, we use the structure technique. Here, our structure takes all the possible values in

bytes 0, 5, 10, 15, while all the remaining bytes are fixed. In addition, we choose the tweak

such that the left most byte takes only 25 possible values. Therefore, one structure generates

24×8+5 × (24×8+5 − 1)/2 ≈ 273 possible pairs with 237 plaintext-tweak combinations. We can

calculate the probability of the whole truncated differential characteristic from the following

probabilities: transition 4 → 1 (z0 → w0) over MC of probability 2−24, AddRoundTweakKey

cancellation of w0[0], k1[0] of probability 2−8, transition 4 → 1 w6 → z6 over MC−1 of prob-

ability 2−24 and to have 12 zero differences in the ciphertext which happens with probability

2−12×8=−96. Therefore, the total probability of the truncated differential characteristic is

2−24−8−24−96=−152. Hence, to find one pair of messages that confirm to the truncated differ-

ential characteristic we need to collect 2152 message pairs. Since each structure contains 273

message pairs, we need 279 structures. Thus, the data complexity of the attack is 279+37=116

plaintext-tweak combinations. Therefore, we query the encryption oracle with 2116 plaintext-

tweak combinations.

Key Recovery. In this step, we first try to identify the number of key suggestions of

9 bytes, k0[0, 5, 10, 15], u7[0], k8[0, 7, 10, 13] that correspond to each pair of messages. This

can be achieved as follows: to deduce the values of the 4 bytes of k0[0, 5, 10, 15], we guess

25 possible values of ∆w0[0] and propagate the values linearly through MC−1, SR−1 to

get ∆y0[0, 5, 10, 15]. The pairs of messages we have are grouped into 25 different groups

based on the tweak difference at ∆k0[0], which is equal to ∆w0[0]. Then, the knowledge

of the plaintexts with the tweak ∆k0[0] allows to compute ∆x0[0, 5, 10, 15]. Using the dif-

ferential property of the S-box, we evaluate x0[0, 5, 10, 15]. The knowledge of the plaintext

with x0[0, 5, 10, 15] allows us to deduce the values of the 4 bytes k0[0, 5, 10, 15]. To deduce

the values of the 4 bytes k8[0, 7, 10, 13], we guess the byte ∆z6[0] and propagate it linearly

through MC and ATK to compute ∆x7[0, 1, 2, 3]. The knowledge of ciphertext allows us

to compute ∆y7[0, 1, 2, 3]. Then, we can deduce the value of the four bytes y7[0, 1, 2, 3] us-

ing the differential property of the S-box. The knowledge of the ciphertext and y7[0, 1, 2, 3]

allows the computation of k8[0, 7, 10, 13]. The value of u7[0] can be deduced by guessing

∆x6[0]. To summarize this part, we have 25+2×8 = 221 key candidates for the 9 key bytes

k0[0, 5, 10, 15], u7[0], k8[0, 7, 10, 13].

From the 2152 message pairs required to satisfy the truncated differential characteristic, we

only use 256 message pairs to identify the b-δ-set and build the ordered sequences because we

have 12 bytes filter in the ciphertext side. For every pair of the remaining message pairs and

for every key value of the 9 key bytes we identify the b-δ-set and compute the ordered se-

quences at x6[0]. If no match is found in the precomputation table, the key value is discarded.

57

Otherwise, it is considered as a key candidate. The probability of having a wrong key match

in the table is 285 × 2−256 = 2−171. Therefore, after this step, we will have 256+21−171 = 2−94

key candidates for the key bytes k0[0, 5, 10, 15], k8[0, 7, 10, 13], u7[0], i.e., we will end up with

the correct key only.

Attack Complexity. The memory complexity of the attack is dominated by the precompu-

tation phase which requires the storage of 285 ordered sequences where each ordered sequence

is 256 bits . Therefore, the memory complexity of the attack is 285 × 256/128 = 286 128-bit

blocks. The data complexity of the attack is determined from the data collection step. There-

fore, the data complexity is 2116 plaintext-tweak combinations. The time complexity of the

offline phase, which is the time required to build the precomutation table, is 285×25×2−4 ≈ 286

encryptions. The time complexity of the online phase is 256×221×25×2−5 ≈ 277. Therefore,

the time complexity of the attack is dominated by the data collection phase which is 2116

encryptions.

4.4 Conclusion

By utilizing the freedom in the tweak, we presented a MitM attack against 8-round reduced

Kiasu-BC, which violates the designers’ claim that no more than 7 rounds can be reached

using MitM attacks.

58

Chapter 5

Impossible Differential Cryptanalysis

of SKINNY

SKINNY is a new lightweight tweakable block cipher family proposed by Beierle et al. at

CRYPTO 2016. SKINNY has 6 main variants where SKINNY-n-t is a block cipher that

operates on n-bit blocks using t-bit tweakey (key and tweak) where n = 64 or 128 and

t = n, 2n, or 3n. In this chapter, we present impossible differential attacks against reduced-

round versions of all the 6 members of the SKINNY family in the single-tweakey model.

More precisely, using an 11-round impossible differential distinguisher, we present impossible

differential attacks against 18-round SKINNY-n-n, 20-round SKINNY-n-2n and 22-round

SKINNY-n-3n (n = 64 or 128). The time, data and memory complexities of our attacks are

presented in Table 5.1.

Table 5.1: The time, data and memory complexities of our attacks

Block cipher
version

of
rounds

Time Data Memory

SKINNY-64-64 18 257.1 247.52 258.52

SKINNY-128-128 18 2116.94 292.42 2115.42

SKINNY-64-128 20 2121.08 247.69 274.69

SKINNY-128-256 20 2245.72 292.1 2147.1

SKINNY-64-192 22 2183.97 247.84 274.84

SKINNY-128-384 22 2373.48 292.22 2147.22

5.1 Introduction

SKINNY [24] is a Substitution Permutation Network (SPN) family of tweakable lightweight

block ciphers proposed at CRYPTO 2016 by Beierle et al. It supports two block lengths

59

n = 64 or 128 and for each of them, the tweakey t can be either n, 2n or 3n. This family

of ciphers inherits the recent design trend of having an SPN cipher with suboptimal internal

components. More precisely, SKINNY uses a light tweakey schedule along with a round

function that consists of a compact S-box and a sparse diffusion layer. However, these

suboptimal components are arranged such that tight security bounds are guaranteed. Indeed,

using Mixed Integer Linear Programming (MILP), the designers of SKINNY provide high

security bounds against differential/linear attacks for all the SKINNY versions in both the

single-tweakey and related-tweakey models. Furthermore, SKINNY has a good performance

for round-based ASIC implementation as it requires a very small area using serial ASIC.

Moreover, the designers of SKINNY show that its ASIC threshold implementation is very

favorable to AES-128 threshold implementation [31]. Providing compact implementation

and a high level of security with the existence of the tweakey was feasible by generalizing the

Superposition TWEAKEY (STK) construction [72]. Lastly, being a tweakable block cipher

allows SKINNY to be employed into a higher level of operating modes such as SCT [112].

The designers of SKINNY presented 16-round attacks against SKINNY-n-n (n = 64 or

128) in the single-tweakey model utilizing 11-round impossible differential distinguisher. To

provoke public cryptanalysis of SKINNY, they have announced a competition [23] against

two particular variants of SKINNY, namely, SKINNY-64-128 and SKINNY-128-128, in which

they indicated that the best known attack against SKINNY-64-128, in the single-tweakey

model, is 18 rounds. As a result, a handful of third-party analysis have been published [97,

114, 15]. However, these attacks are in the arguably weaker attack model, the related-tweakey

model, in which the attacker is assumed to have the ability to query the encryption oracle

with keys that have specific relations.

In this chapter, we present impossible differential attacks against reduced-round versions

of all the 6 variants of SKINNY, namely, SKINNY-n-n, SKINNY-n-2n and SKINNY-n-

3n (n = 64 or 128). All these attacks utilize the same 11-round impossible differential

distinguisher. Then, we exploit the fact that the tweakey additions are only performed on

the first two rows of the state, along with the MixColumns operation properties and the

tweakey schedule relations, to extend this distinguisher by 7, 9, 11 rounds to launch key-

recovery attacks in the single-tweakey model against 18, 20, 22 rounds of SKINNY-n-n,

SKINNY-n-2n and SKINNY-n-3n (n = 64 or 128), respectively. Specifically, we extend the

designers’ 11-round impossible differential distinguisher by 3, 3 and 3 rounds above it and

4, 6 and 8 rounds below it to launch 18, 20 and 22 rounds attacks against SKINNY-n-n,

SKINNY-n-2n and SKINNY-n-3n (n = 64 or 128), respectively.

60

The rest of the chapter is organized as follows. Section 5.2 provides the notations used

throughout the chapter and a brief description of SKINNY . In section 5.3, we present

the impossible differential distinguisher used in our attacks. The details of our attacks are

presented in sections 5.4, 5.5 and 5.6, respectively. Finally, the chapter is concluded in section

5.7.

5.2 Specifications of SKINNY

The following notations are used throughout the rest of the chapter:

- TKi: The round tweakey used in round i.

- ETKi: The equivalent round tweakey used in round i.

- xi: The input to the SubCells (SC) operation at round i.

- yi: The input to the AddRoundConstantTweakey (AK) operation at round i.

- y
′

i: The input to the AddRoundConstantEquivlantTweakey (AEK) operation at round

i.

- zi: The input to the ShiftRows (SR) operation at round i.

- wi: The input to the MixColumns (MC) operation at round i.

- xi[j]: The jth cell of xi, where 0 ≤ j < 16.

- xi[j · · · l]: The cells from j to l of xi, where j < l.

- xi[j, l]: The cells j and l of xi.

- xi[j][k]: The kth bit of the jth cell of xi.

- xi[j]{k, l,m}: The XOR of bits k, l,m of cell j of xi.

- xi[col : j]: The four cells in column j, e.g., xi[col : 0] = xi[0, 4, 8, 12].

- xi[SR
−1[col : j]]: The four cells in column j after the SR−1 operation is applied, e.g.,

xi[SR
−1[col : 0]] = xi[0, 7, 10, 13].

- xi[col : j][k, l]: The jth and lth cells of column j of xi, e.g., xi[col : 0][0, 1] = xi[0, 4].

- ∆xi, ∆xi[j]: The difference at state xi and cell xi[j], respectively.

61

Table 5.2: Number of rounds for SKINNY-n-t, with n-bit state and t-bit tweakey state

Block size n
Tweakey size t

n 2n 3n

64 32 36 40

128 40 48 56

The SKINNY family supports two block lengths of n = 64 and 128 bits. In both versions,

the internal state IS is represented as a 4 × 4 array of cells such that one cell represents a

nibble (when the block length n = 64) and a byte (when the block length n = 128). While

classical block ciphers have two inputs, namely the plaintext and the key, and output the

ciphertext, SKINNY is a tweakable block cipher [96, 72] that uses an input called the tweakey

instead of the key. Then, the user has the freedom to choose which part of the tweakey to

be assigned to the key and which part to be assigned to the tweak. This family of block

ciphers with block length n deploys three main tweakeys of lengths t = n bits, t = 2n bits

and t = 3n bits. Similar to the state, the tweakey state can be represented as z 4× 4 arrays

of cells, i.e., we have arrays TK1 (in case z = 1), TK1 and TK2 (in case z = 2), TK1, TK2,

and TK3 (in case z = 3).

The encryption operation proceeds as follows. First, the plaintext m = m0‖m1 ‖ · · · ‖m14

‖m15 (where |mi| = n/16 = s-bit) is loaded into the internal state IS row-wise as depicted

in Figure 5.1. Then, the tweakey input tk = tk0‖tk1‖ · · · ‖tk16z−1 (where |tki| is s-bit as in

the internal state) is loaded row-wise such that TK1[i] = tki for 0 ≤ i ≤ 15 (in case z = 1),

TK1[i] = tki,TK2[i] = tk16+i for 0 ≤ i ≤ 15 (in case z = 2) or TK1[i] = tki,TK2[i] =

tk16+i,TK3[i] = tk32+i for 0 ≤ i ≤ 15 (in case z = 3). Finally, the internal state is updated

by applying the round function r times, where the number of rounds r depends on the block

length and the tweakey size as shown in Table 5.2.

As shown in Figure 5.1, in each round, SKINNY applies five different operations, namely,

SubCells, AddConstants, AddRoundTweakey, ShiftRows and MixColumns. The cipher does

not apply whitening tweakeys. Consequently, parts of the first and last rounds do not add

any security. In what follows, we describe the five different operations that are employed in

each round:

� � ¡

¢ £ ¤ ¥

¦ § �� ��

� �¡ �¢ �£

�� ��

��� ��������	

����

����

���	

��������

Figure 5.1: The SKINNY round function

62

Table 5.3: The SKINNY LFSR used in the tweakey schedule, where s denotes the cell size
in bits

TK s LFSR

TK2 4 (x3 ‖ x2 ‖ x1 ‖ x0) → (x2 ‖ x1 ‖ x0 ‖ x3 ⊕ x2)

8 (x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0) → (x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0 ‖ x7 ⊕ x5)

TK3 4 (x3 ‖ x2 ‖ x1 ‖ x0) → (x0 ⊕ x3 ‖ x3 ‖ x2 ‖ x1)

8 (x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1 ‖ x0) → (x0 ⊕ x6 ‖ x7 ‖ x6 ‖ x5 ‖ x4 ‖ x3 ‖ x2 ‖ x1)

• SubCells (SC): A nonlinear bijective mapping applied on every cell of the internal state,

where 4-bit (in case n = 64) or 8-bit (in case n = 128) S-boxes are applied.

• AddConstants (AC): A 4 × 4 round constant is XORed to the state. These round

constants are generated using a 6-bit affine LFSR. The details of generating the round

constants can be found in [24].

• AddRoundTweakey (ART): The first and second rows of all the tweakey arrays are

XORed to the state. More precisely, for 0 ≤ i ≤ 7, we have:

– IS[i] = IS[i]⊕ TK1[i], when z = 1,

– IS[i] = IS[i]⊕ TK1[i]⊕ TK2[i], when z = 2,

– IS[i] = IS[i]⊕ TK1[i]⊕ TK2[i]⊕ TK3[i], when z = 3.

• ShiftRows (SR): The rows of the state are rotated as in AES but to the right, i.e., the

following permutation P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14 , 15, 12] is applied.

• MixColumns (MC): Each column in the state is multiplied by a binary matrix M ,

where M and its inverse M−1 are given as follows:

M =

1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

, M−1 =

0 1 0 0

0 1 1 1

0 1 0 1

1 0 0 1

.

Tweakey Schedule. As depicted in Figure 5.2, the tweakey arrays are updated through

tweakey schedule as follows. First all the tweakey arrays, i.e., TK1 (when z = 1), TK1,TK2

(when z = 2), or TK1,TK2,TK3 (when z = 3) are permuted using a permutation PT such

that PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6 , 7]. Finally, each cell in the first and

second rows of TK2,TK3 (when z = 2 or z = 3) is updated using the LFSR operations

shown in Table 5.3, where x0 is the LSB of the cell.

63

¨ © ª «

¬ ® ¯

° ± ©¨ ©©

©ª ©« ©¬ ©

�²

����

���������	
����	

���������

����

Figure 5.2: The tweakey schedule

In our attack, we use AddKey (AK) operation which compromises the AC and ART

operations. Moreover, we swap the linear operations AK, MC ◦ SR, and hence we use the

equivalent subtweakey ETK instead of the subtweakey TK such that ETKr+1 = MC ◦

SR(TKr).

5.3 An Impossible Differential Distinguisher of SKINNY

The designers of SKINNY exhaustively searched for the longest truncated impossible differ-

ential that has one active cell in both ∆δ and ∆β. They found 16 such truncated impossible

differentials where each one covers 11 rounds. They exploited one of these 16 impossible

differentials, illustrated in Figure 5.3, to attack 16-round SKINNY-n-n (n = 64 or 128). This

distinguisher, which we reuse in our attacks, states that a pair of messages that has only one

active cell at x3[12] cannot have only one active cell at x14[8]. The reason is that the active

cell ∆x3[12] results in 4 active cells and 12 unknown cells after 6 rounds, i.e., at state x9.

From the other side, the active cell ∆x14[8] results in 4 inactive cells, 5 unknown cells and 7

active cells at state Y9 contradicting with the forward differential at ∆y9[15].

Our attacks depend on the differential property of the S-box (see Proposition 1).

All our attacks use the same 11-round distinguisher, have 3 analysis rounds on its top.

They, however, differ in the analysis rounds appended below it. In what follows, we describe

our attack against SKINNY-64-128 in details and then mention only the main differences for

the other attacks.

64

��

��

�� �� ��

�³ �´

�µ �¶

�·

�¸

�¹º

�¹»

�³ �´

�µ �¶

�·

�¹º

�¹»

�¹³

�¼ �¼

�¹¹ �¹¹

��

��

��

��

�¹´

��

��

��

��
��

��

��

	¸ �¸

�¹³

�
��������
�

��

��

�� �� ��

��

��

��

��

��

�� �� ��

��

��

��

��

��

��

��
��

��

��

��

��

��

��

��

��������������

��
����������

��������������

���������

���������������
��

��
���
����������

��������������

�
��������
�

Figure 5.3: Impossible differential distinguisher of SKINNY

5.4 Impossible Differential Key-recovery Attack on 20-

round SKINNY-n-2n

5.4.1 Impossible Differential Key-recovery Attack on SKINNY-

64-128

In this section, we present the first published attack on 20-round SKINNY-64-128 in the

single-tweakey model. We use the notion of data structures to generate enough pairs of mes-

sages to launch the attack. In the first three rounds, we use the equivalent tweakey ETK

instead of the tweakey TK. Therefore, the first round has no tweakey, and hence we can

build our structures at y
′

1. Then, we propagate it backward linearly through MC−1, SR−1,

and SC−1 to obtain the corresponding plaintexts. Our utilized structure takes all the possible

values in 7 nibbles y
′

1[3, 4, 5, 6, 9, 11, 14] while the remaining nibbles take a fixed value. Thus,

one structure generates 24×7 × (24×7 − 1)/2 ≈ 255 possible pairs. Hence, we have 255 possible

pairs of messages satisfying the plaintext differences. In addition, we utilize the following

pre-computation tables in order to efficiently extract/filter the (equivalent) tweakey nibbles

corresponding to the active state nibbles involved in the analysis rounds, where the table

65

Hl{(E)TKi[S]} (also referred to as Hl) is used to extract/filter the (equivalent) tweakey used

in round i at cells belonging to the set S and H∗ is computed once and used to extract all

the tweakey nibbles of the last analysis round and those corresponding to column 1 in round

18.

H1{TK18[2, 6]}: For all the 2
24 possible values of∆z17[SR

−1[col : 2][0, 1]], z17[SR
−1[col : 2]],

compute ∆y18[col : 2], y18[col : 2]. Then, store ∆z17[SR
−1[col : 2][0, 1]], z17[SR

−1[col :

2]], y18[col : 2][0, 1] in H1 indexed by ∆y18[col : 2], y18[col : 2][2, 3]. H1 has 224 rows and

on average about 224/224 = 1 value in each row.

H2{TK18[0, 4]}: For all the 2
28 possible values of ∆z17[SR

−1[col : 0][0, 2, 3]], z17[SR
−1 [col :

0]], compute ∆y18[col : 0], y18[col : 0]. Then, store ∆z17[SR
−1[col : 0][0, 2, 3]], z17[SR

−1[col :

0]], y18[col : 0][0, 1] in H2 indexed by ∆y18[col : 0], y18[col : 0][2, 3]. H2 has 224 rows and on

average about 228/224 = 24 values in each row.

H3{TK18[3, 7]}: For all the 2
28 possible values of ∆z17[SR

−1[col : 3][0, 1, 3]], z17[SR
−1[col :

3]], compute ∆y18[col : 3], y18[col : 3]. Then, store ∆z17[SR
−1[col : 3][0, 1, 3]], z17[SR

−1[col :

3]], y18[col : 3][0, 1] in H3 indexed by ∆y18[col : 3], y18[col : 3][2, 3]. H3 has 224 rows and on

average about 228/224 = 24 values in each row.

H4{TK17[0, 4]}: For all the 220 possible values of ∆z16[SR
−1[col : 0][0]], z16[SR

−1[col : 0]],

compute ∆y17[col : 0][0, 1, 3], y17[col : 0]. Then, store ∆z16 [SR−1[col : 0][0]], z16[SR
−1[col :

0]], y17[col : 0][0, 1] in H4 indexed by ∆y17[col : 0][0, 1, 3], y17[col : 0][2, 3]. H4 has 220 rows

and on average about 220/220 = 1 value in each row.

H5{TK17[2, 3, 6]}: From the properties of the MixColumns, we have ∆x16[0] = ∆x16[8] =

∆x16[12] = ∆w15[8]. Therefore, for all the 2
40 possible values for∆x16[8], x16[8, 12], ∆w16[2, 7],

w16[2, 6, 14], x17[3, 11], compute w16[10, 15], ∆y17[2 , 3, 6, 10, 11, 14] , y17[2, 3, 6, 10, 11, 14, 15]

such that y17[15] = SC([w16[15] ⊕ x17[3]), from the MixColumns operation. Then, store

∆z16[SR
−1 [col : 2][0, 2]], ∆z16[SR

−1[col : 3][1, 3]], z16[SR
−1[col : 2]], z16[SR

−1 [col : 3][3]],

y17[2, 3, 6] in H5 indexed by ∆y17[2, 3, 6, 10, 11, 14], y17[10, 11, 14, 15]. H5 has 2
40 rows and on

average about 240/240 = 1 value in each row.

H6{TK17[1, 5]}: For all the 2
24 possible values of∆z16[SR

−1[col : 1][0, 3]], z16 [SR
−1[col : 1]],

compute ∆y17[col : 1][0, 1, 3], y17[col : 1]. Then, store ∆z16[SR
−1 [col : 1][0, 3]], z16[SR

−1[col :

1]], y17[col : 1][0, 1] in H6 indexed by ∆y17[col : 1][0, 1, 3], y17[col : 1][2, 3]. H6 has 220 rows

and on average about 224/220 = 24 values in each row.

66

�� ��

��½

��¾

��¿

�½À

�½Á

�½Â

�½Ã

�

��

�½

�¾

�½À

�½Á

�½Â

�½Ã

�½

�¾

�½À

�½Á

�½Â

�½Ã

	½

	¾

	½À

	½Á

	½Â

	½Ã

��Ä �Ä 	Ä

�½Å �½Å �½Å 	½Å

�½Æ �½Æ �½Æ 	½Æ

�� �� ����

�� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

�� �� ����

��������	
���
�
����	������������
�

��

��

�¿

�����

�������	������

���������������

�������	������

����������

��������������

�� ���!����

Figure 5.4: Impossible differential attack on 20-round SKINNY-n-2n

67

H7{TK16[0]}: For all the 220 possible values of ∆z15[SR
−1[col : 0][2]], z15[SR

−1 [col : 0]],

compute ∆y16[col : 0][0, 2, 3], y16[col : 0]. Then, store ∆z15[SR
−1[col : 0][2]], z15[SR

−1[col :

0]], y16[col : 0][0] in H7 indexed by ∆y16[col : 0][0, 2, 3], y16[col : 0][2, 3]. H7 has 220 rows and

on average about 220/220 = 1 value in each row.

H8{TK16[2]}: For all the 220 possible values of ∆z15[SR
−1[col : 2][0]], z15[SR

−1 [col : 2]],

compute ∆y16[col : 2][0, 1, 3], y16[col : 2]. Then, store ∆z15[SR
−1[col : 2][0]], z15[SR

−1[col :

2]], y16[col : 2][0, 1] in H8 indexed by ∆y16[col : 2][0, 1, 3], y16[col : 2][2, 3]. H8 has 220 rows

and on average about 220/220 = 1 value in each row.

H9{TK15[2]}: From the properties of the MixColumns, we have ∆x15[2] = ∆x15[10]

= ∆x15[14] = ∆w14[10]. Therefore, for all the 24 possible differences for ∆x15[2, 10], 28

possible values of x15[2, 10] and 24 possible values of TK15[2], compute ∆z15[2 , 10], z15[2, 10].

Then, store ∆z15[2] in H9 indexed by ∆z15[2, 10], z15[2, 10], TK15[2]. H9 has 2
20 rows and on

average about 216/220 = 2−4 values in each row.

H10{ETK1[4, 11, 14]}: For all the 212 possible differences of ∆w1[5, 9, 13], we have only

24 valid differences that have exactly one difference in ∆y
′

2[13] and 3 zero differences in

∆y
′

2[1, 5, 9]. Therefore, for all the 2
4 possible differences of ∆w1[5, 9, 13], 2

12 possible values of

w1[5, 9, 13] and 28 possible values of ETK1[4, 14], compute∆y
′

1[4, 14], y
′

1[4, 14], ∆x1[11], x1[11].

Then, store ∆w1[5, 9, 13], w1[5, 9, 13], x1[11] in H10 indexed by ∆y
′

1[4, 14], y
′

1[4, 14], ∆x1[11],

ETK1[4, 14]. H10 has 228 rows and on average about 224/228 = 2−4 values in each row.

H11{ETK1[3, 6, 9]}: For all the 212 possible differences of ∆w1[3, 7, 11], we have only

24 valid differences that have exactly one difference in ∆y
′

2[7] and 3 zero differences in

∆y
′

2[3, 11, 15]. Therefore, for all the 24 possible differences of ∆w1[3, 7, 11], 2
12 possible val-

ues of w1[3, 7, 11] and 24 possible values of ETK1[6], compute ∆y
′

1[6], y
′

1[6], ∆x1[3 , 9], x1[3, 9].

Then, store∆w1[3, 7, 11], w1[3, 7, 11], x1[3, 9] inH11 indexed by∆x1[3, 9] , ∆y
′

1[6], y
′

1[6], ETK1[6].

H11 has 220 rows and on average about 220/220 = 1 value in each row.

H12{TK16[1]}: For all the 2
8 possible values of∆x16[1], x16[1], compute∆y16[1] , y16[1].Then,

store y16[1] in H12 indexed by ∆y16[1]. H12 has 24 rows and on average about 28/24 = 24

values in each row.

H13{ETK1[1, 5]}: For all the 2
16 possible values of ∆w1[6], w1[1, 6],ETK1[1, 5] (ETK1[1] =

ETK1[5], see Appendix A), compute ∆y
′

1[5], y
′

1[1, 5]. Then, store ∆w1[6], w1 [1, 6] in H13 in-

dexed by ∆y
′

1[5], y
′

1[1, 5], ETK1 [1]. H13 has 2
16 rows and on average about 216/216 = 1 value

in each row.

68

H14{ETK2[7, 10, 13]}: From the properties of the MixColumns, we have∆w2[4] = ∆w2[8] =

∆w2[12] = ∆y
′

3[12]. Therefore, for all the 2
4 possible differences for ∆w2[4, 8, 12], 2

12 possible

values of w2[4, 8, 12] and 212 possible values of ETK2[7, 10, 13], compute∆y
′

2[7, 10, 13], y
′

2[7, 10, 13].

Then, store ∆y
′

2[10] in H14 indexed by ∆y
′

2[7, 10 , 13], y
′

2[7, 13],ETK2[7, 10, 13]. H14 has 232

rows and on average about 228/232 = 2−4 value in each row.

H∗: For all the 232 possible values of ∆zi[SR
−1[col : j]], zi[SR

−1[col : j]], compute ∆yi+1[col :

j], yi+1[col : j]. Then, store ∆zi[SR
−1[col : j]], zi[SR

−1[col : j]], yi+1[col : j][0, 1] in H∗ indexed

by ∆yi+1[col : j], yi+1[col : j][2, 3]. H
∗ has 224 rows and on average about 232/224 = 28 values

in each row.

Instead of guessing the tweakey nibbles involved in the analysis rounds as in the general

approach of impossible differential attacks, we use the above mentioned pre-computation

tables to deduce the tweakey nibbles that lead a specific pair of plaintext/ciphertext to the

impossible differential and thus should be excluded. The details of our attack are as follows:

1. Generate 2m structures as described above. Therefore, we have 2m+55 pairs of messages

generated using 2m+28 messages. Then, ask the encryption oracle for their correspond-

ing ciphertexts and decrypt them partially over MC−1, SR−1 to compute z19.

2. Determine the number of possible values of TK19[0 : 7] that satisfy the last round by

performing the following steps for all the message pairs:

(a) Access H∗ for i = 18, j = 0 and compute TK19[0, 4] such that TK19[0, 4] =

y19[0, 4]⊕ z19[0, 4]
1. Therefore, we have 28 possible tweakeys for TK19[0, 4].

(b) Access H∗ for i = 18, j = 1 and compute TK19[1, 5] such that TK19[1, 5] =

y19[1, 5]⊕z19[1, 5]. Therefore, we have 2
8+8=16 possible tweakeys for TK19[0 , 1, 4, 5].

(c) Access H∗ for i = 18, j = 2 and compute TK19[2, 6] such that TK19[2, 6] =

y19[2, 6] ⊕ z19[2, 6]. Therefore, we have 216+8=24 possible tweakeys for TK19[0

, 1, 2, 4, 5, 6].

(d) Access H∗ for i = 18, j = 3 and compute TK19[3, 7] such that TK19[3, 7] =

y19[3, 7]⊕ z19[3, 7]. Therefore, we have 224+8=32 possible tweakeys for TK19[0 : 7].

3. Determine the number of possible values of TK18[0 : 7] that satisfy the next to last round

by performing the following steps for all the message pairs and remaining tweakeys that

satisfy the path until now:

1
TK19[0, 4] = y19[0, 4]⊕ z19[0, 4] means that TK19[0] = y19[0]⊕ z19[0],TK19[4] = y19[4]⊕ z19[4].

69

(a) AccessH1 and compute TK18[2, 6] such that TK18[2, 6] = y18[2, 6]⊕z18[2, 6]. There-

fore, we have 232 possible tweakeys for TK19[0 : 7],TK18[2 , 6].

(b) AccessH2 and compute TK18[0, 4] such that TK18[0, 4] = y18[0, 4]⊕z18[0, 4]. There-

fore, we have 232+4=36 possible tweakeys for TK19[0 : 7],TK18[0, 2, 4, 6].

(c) AccessH3 and compute TK18[3, 7] such that TK18[3, 7] = y18[3, 7]⊕z18[3, 7]. There-

fore, we have 236+4=40 possible tweakeys for TK19[0 : 7],TK18[0, 2, 3, 4, 6, 7].

(d) Access H∗ for i = 17, j = 1 and compute TK18[1, 5] such that TK18[1, 5] =

y18[1, 5] ⊕ z18[1, 5]. Therefore, we have 240+8=48 possible tweakeys for TK19[0 :

7],TK18[0 : 7].

4. Determine the number of possible values of TK17[0 : 6] that satisfy the eighteenth round

by performing the following steps for all the message pairs and remaining tweakeys that

satisfy the path until now:

(a) AccessH4 and compute TK17[0, 4] such that TK17[0, 4] = y17[0, 4]⊕z17[0, 4]. There-

fore, we have 248 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0, 4].

(b) AccessH5 and compute TK17[2, 3, 6] such that TK17[2, 3, 6] = y17[2, 3, 6]⊕z17[2, 3, 6].

Therefore, we have 248 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0, 2, 3, 4, 6].

(c) AccessH6 and compute TK17[1, 5] such that TK17[1, 5] = y17[1, 5]⊕z17[1, 5]. There-

fore, we have 248+4=52 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6].

5. Determine the number of possible values of TK16[0, 2] that satisfy the seventeenth round

by performing the following steps for all the message pairs and remaining tweakeys that

satisfy the path until now:

(a) Access H7 and compute TK16[0] such that TK16[0] = y16[0] ⊕ z16[0]. Therefore,

we have 252 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6],TK16[0].

(b) Access H8 and compute TK16[2] such that TK16[2] = y16[2]⊕ z16[2]. Therefore, we

have 252 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6],TK16[0, 2]
2.

6. The knowledge of TK19[6] and TK17[4] enables us to deduce TK15[2] (see Appendix

A). Hence, we determine the number of possible tweakey values that satisfy the six-

teenth round by performing the following steps for all the message pairs and remaining

tweakeys that satisfy the path until now:

(a) Access H9; and we will find 2−4 possible values in each row, i.e., we have 4-bit

filter on the remaining tweakeys. Therefore, we have 252−4=48 possible tweakeys

for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6],TK16[0, 2] TK15[2].

2Note that instead of having TK16[6] that lead to the impossible differential distinguisher, we have x16[6]
that result in the same impossible differential distinguisher.

70

7. The knowledge of TK18[2, 4] and TK16[0, 2] enables us to deduce ETK1[4, 6, 14]
3 (see

Appendix A). Hence, we determine the number of possible values for ETK1[3, 9, 11]

that satisfy the second round by performing the following steps for all the message

pairs and remaining tweakeys that satisfy the path until now:

(a) Access H10 and compute ETK1[11] such that ETK1[11] = y
′

1[11]⊕ x1[11]; we will

find 2−4 possible values in each row, i.e., we have 4-bit filter on the remaining

tweakeys. Therefore, we have 248−4=44 possible tweakeys for TK19[0 : 7], TK18[0 :

7],TK17[0 : 6],TK16[0, 2],TK15[2],ETK1[4, 6, 11, 14].

(b) Access H11 and compute ETK1[3, 9] such that ETK1[3, 9] = y
′

1[3, 9] ⊕ x1[3, 9].

Therefore, we have 244 possible tweakeys for TK19[0 : 7],TK18[0 : 7],TK17[0 :

6],TK16[0, 2],TK15[2], ETK1[3, 4, 6, 9, 11, 14].

8. Determine the number of possible values for TK16[1] that satisfy the seventeenth round

by performing the following steps for all the message pairs and remaining tweakeys that

satisfy the path until now:

(a) Access H12 and compute TK16[1] such that TK16 = y16[1]⊕ z16[1]. Therefore, we

have 244+4=48 possible tweakeys for TK19[0 : 7],TK18[0 : 7],TK17[0 : 6] ,TK16[0, 1, 2]

,TK15[2], ETK1[3, 4, 6, 9, 11, 14].

9. The knowledge of TK18[0] and TK16[1] enables us to deduce ETK1[1, 5]
4 (see Appendix

A). Hence, we determine the number of possible tweakey values that satisfy the sec-

ond round by performing the following steps for all the message pairs and remaining

tweakeys that satisfy the path until now:

(a) Access H13 and we will find 1 possible value in each row. Therefore, we have 248

possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6] ,TK16[0, 1, 2],TK15[2],

ETK1[1, 3, 4, 5, 6, 9, 11, 14],.

10. The knowledge of TK19[0, 3, 7] and TK17[1, 3, 5] enables us to deduce ETK2[7, 10, 13]

(see Appendix A). Hence, we determine the number of possible tweakey values that

satisfy the third round by performing the following steps for all the message pairs and

remaining tweakeys that satisfy the path until now:

(a) Access H14 and we will find 2−4 possible values in each row. Therefore, we have

248−4=44 possible tweakeys for TK19[0 : 7], TK18[0 : 7],TK17[0 : 6] ,TK16[0, 1, 2]

,TK15[2], ETK1[1, 3, 4, 5, 6, 9, 11, 14], ETK2[7, 10, 13].

3Note that ETK1[6] = ETK1[14].
4Note that ETK1[1] = ETK1[5].

71

Attack Complexity. As depicted in Figure 5.4, we have 38 tweakey nibbles that are involved

in the analysis rounds. Thanks to the tweakey schedule, these 38 nibbles take only 2116

possible values (see Appendix A). For each of the 2m+55 message pairs, we remove, on average,

244 out of 2116 possible values of these tweakey nibbles. Therefore, the probability that a

wrong tweakey is not discarded with one pair is 1−244−116 = 1−2−72. Hence, after processing

all the 2m+55 pairs, we have 2116(1 − 2−72)2
m+55

≈ 2116 × (e−1)2
m+55−72

≈ 2116 × 2−1.4×2m−17

remaining candidates for 116-bit of the tweakey. In order to determine the optimal value of m

that leads to the best computational complexity, we evaluate the computational complexity

of the attack as a function of m, as illustrated in Table 5.4. Similar to AES [54], the

SKINNY round function can be implemented using 16 table lookups. As seen from Table

5.4, steps 5(a), 5(b) and 6(a) dominate the time complexity of the attack, and hence in order

to optimize the time complexity of the attack we choose m = 19.69. Consequently, we have

2107 remaining tweakey candidates for the 116-bit of the tweakey. Therefore, the tweakey

can be recovered by exhaustively searching the 2107 remaining tweakey candidates with 212

remaining tweakey bits, that are not involved in the attack, using 2 plaintext/ciphertext

pairs. Therefore, the total time complexity of the attack is 2 × 2107 × 212 + 2120.15 = 2121.08

encryptions. The data complexity of the attack can be determined from step 1 in which

we generate 2m=19.69 structures. Hence, the data complexity of the attack is 219.69+28=47.69

chosen plaintexts. The memory complexity of the attack is dominated by the memory that

is required to store 2m+55=74.69 pairs to exclude the wrong tweakeys, hence, it is 274.69.

5.4.2 Impossible Differential Key-recovery Attack on SKINNY-

128-256

The only difference between SKINNY-64-128 and SKINNY-128-256 is the tweakey schedule,

more precisely, the LFSR operation. The above attack on SKINNY-64-128 can be applied

on SKINNY-128-256 while only considering that the cell size s = 8. Therefore, one structure

can generate 2111 pairs with 256 chosen plaintexts. According to the tweakey schedule, the

38 bytes involved in the attack have 2232 possible values (see Appendix B). In this attack,

we exclude, on overage, 288 out of 2232 possible values of the involved tweakey bytes for

every message pair. Hence, the probability that one wrong tweakey is not discarded is

1− 288−232 = 1− 2−144. Therefore, we have 2232 × (1− 2−144)2
m+111

≈ 2232 × (e−1)2
m+111−144

≈

2232 × 2−1.4×2m−33
remaining candidates for 232-bit of the tweakey bytes, after processing

all the message pairs. In order to optimize the time complexity of the attack, we choose

m = 36.1. Consequently, we have 2220 remaining candidates for 232-bit of the tweakey,

and hence the tweakey can be recovered by exhaustively searching the remaining candidates

with 224 possible values, for the 24 bits of the tweakey that are not involved in the attack,

using 2 plaintext/ciphertext pairs. Therefore, the total time complexity of the attack is

72

Table 5.4: Time complexity of the different steps of the attack on 20-round SKINNY-64-128,
where NT denotes the number of tweakeys to be excluded

Step Time Complexity (in 20-round
encryptions)

NT m = 19.69

1 2m+28 - 247.69

2(a) 2m+55 ×
1

16× 20
≈ 2m+46.68 28 266.37

2(b) 2m+55 × 28 ×
1

16× 20
≈ 2m+54.68 216 274.37

2(c) 2m+55 × 216 ×
1

16× 20
≈ 2m+62.68 224 282.37

2(d) 2m+55 × 224 ×
1

16× 20
≈ 2m+70.68 232 290.37

3(a) 2m+55 × 232 ×
1

16× 20
≈ 2m+78.68 232 298.37

3(b) 2m+55 × 232 ×
1

16× 20
≈ 2m+78.68 236 298.37

3(c) 2m+55 × 236 ×
1

16× 20
≈ 2m+82.68 240 2102.37

3(d) 2m+55 × 240 ×
1

16× 20
≈ 2m+86.68 248 2106.37

4(a) 2m+55 × 248 ×
1

16× 20
≈ 2m+94.68 248 2114.37

4(b) 2m+55 × 248 ×
2

16× 20
≈ 2m+95.68 248 2115.37

4(c) 2m+55 × 248 ×
1

16× 20
≈ 2m+94.68 252 2114.37

5(a) 2m+55 × 252 ×
1

16× 20
≈ 2m+98.68 252 2118.37

5(b) 2m+55 × 252 ×
1

16× 20
≈ 2m+98.68 252 2118.37

6(a) 2m+55 × 252 ×
1

16× 20
≈ 2m+98.68 248 2118.37

7(a) 2m+55 × 248 ×
1

16× 20
≈ 2m+94.68 244 2114.37

7(b) 2m+55 × 244 ×
1

16× 20
≈ 2m+90.68 244 2110.37

8(a) 2m+55 × 244 ×
1

16× 20
≈ 2m+90.68 248 2110.37

9(a) 2m+55 × 248 ×
1

16× 20
≈ 2m+94.68 248 2114.37

10(a) 2m+55 × 248 ×
1

16× 20
≈ 2m+94.68 244 2114.37

73

2× 2220 × 224 + 236.1+111 × 2104 × 3
16×20

5= 2245 + 2244.36 = 2245.72. The data complexity of the

attack is 2m+56=92.1 chosen plaintexts; and the memory complexity is dominated by storing

2m+111=147.1 message pairs.

5.5 Impossible Differential Key-recovery Attack on 18-

round SKINNY-n-n

The only difference between SKINNY-64-64 and SKINNY-128-128 is the cell size s, where

s = 4 (resp. s = 8) in case of SKINNY-64-64 (resp. SKINNY-128-128). Therefore, we

present the steps of the two attacks concurrently as a function of s. This attack is applicable

to the first 18 rounds of the 20-round attack on SKINNY-n-2n, i.e., the ciphertext c = x18.

Therefore, we use the same steps used in the previous attack from step 4 to the end and the

same precomputation tables from H4 to the end with the following modifications:

- Each structure can generate 27×s×27×s−1 = 214×s−1 with 27×s chosen plaintexts. Then,

to apply the attack we take 2m structures to generate 2m+14×s−1 pairs, but we have 4

s-bit filter in the transition over MC−1 from the ciphertext to w17. Therefore, we have

2m+14×s−1−4×s=m+10×s−1 remaining pairs to launch the attack.

- The number of rows and entries in each table will be represented as a function of s.

For example, H6 has 25×s rows; and in each row, we have 2s entries.

- The modifications of the number of tweakeys to be excluded from step 4 to the end are

presented in Table 5.5.

- The relation of the tweakey cells can be found in Appendix C.

Attack Complexity. We have 22 tweakey cells that are involved in the analysis rounds

where these 22 tweakey cells have only 213×s possible values (see Appendix C). The proba-

bility that one wrong tweakey is not discarded with one pair is 1 − 2−s−13×s = 1 − 2−14×s.

Hence, after processing all the 2m+10×s−1 pairs, we have 213×s(1− 2−14×s)2
m+10×s−1

≈ 213×s ×

(e−1)2
m+10×s−1−14×s

≈ 213×s×2−1.4×2m−4×s−1
remaining candidates for 13×s-bit of the tweakey.

Steps 5(a), 5(b) and 6(a) dominate the time complexity of the attack, as seen from Table 5.5,

and hence in order to optimize the time complexity of the attack we choose m = 19.52 (resp.

m = 36.42) in case of SKINNY-64-64 (resp. SKINNY-128-128). Consequently, we have 244

(resp. 289) remaining tweakey candidates for the 52-bit (resp. 104-bit) of the tweakey. There-

fore, the tweakey can be recovered by exhaustively searching the 244 (resp. 289) remaining

tweakey candidates with 212 (resp. 224) for the other tweakey bits, that are not involved in

5The second term is computed from step 5(a), 5(b) and 6(a).

74

the attack, using 1 plaintext/ciphertext pair. Therefore, the total time complexity of the

attack is 244 × 212 + 256.14 = 257.1 (resp. 289 × 224 + 2116.84 = 2116.94) encryptions in case

of SKINNY-64-64 (resp. SKINNY-128-128). The data complexity of the attack can be de-

termined from step 1 in which we generate 2m=19.52 (resp. 2m=36.42) structures. Hence, the

data complexity of the attack is 219.52+28=47.52 (resp. 236.42+56=92.42) chosen plaintexts in case

of SKINNY-64-64 (resp. SKINNY-128-128). The memory complexity is dominated by the

memory required to store the 258.52 (resp. 2115.42) pairs after the ciphertext filtration and is

estimated to be 258.52 (resp. 2115.42) in case of SKINNY-64-64 (resp. SKINNY-128-128).

Table 5.5: Time complexity of the different steps of the attack on 18-round SKINNY-64-64
and SKINNY-128-128, where NT denotes the number of tweakeys to be excluded

Step Time Complexity (in 18-round encryptions) NT s = 4, m = 19.52 s = 8, m = 36.42

1 2m+7×s - 247.52 292.42

4(a) 2m+10×s−1 ×
1

16× 18
≈ 2m+10×s−9.17 1 250.35 2107.25

4(b) 2m+10×s−1 ×
2

16× 18
≈ 2m+10×s−8.17 1 251.35 2108.25

4(c) 2m+10×s−1 ×
1

16× 18
≈ 2m+10×s−9.17 2s 250.35 2107.25

5(a) 2m+10×s−1 × 2s ×
1

16× 18
≈ 2m+11×s−9.17 2s 254.35 2115.25

5(b) 2m+10×s−1 × 2s ×
1

16× 18
≈ 2m+11×s−9.17 2s 254.35 2115.25

6(a) 2m+10×s−1 × 2s ×
1

16× 18
≈ 2m+11×s−9.17 1 254.35 2115.25

7(a) 2m+10×s−1 ×
1

16× 18
≈ 2m+10×s−9.17 2−s 250.35 2107.25

7(b) 2m+10×s−1 × 2−s ×
1

16 × 18
≈ 2m+9×s−9.17 2−s 246.35 299.25

8(a) 2m+10×s−1 × 2−s ×
1

16 × 18
≈ 2m+9×s−9.17 1 246.35 299.25

9(a) 2m+10×s−1 ×
1

16× 18
≈ 2m+10×s−9.17 1 250.35 2107.25

10(a) 2m+10×s−1 ×
1

16× 18
≈ 2m+10×s−9.17 2−s 6 250.35 2107.25

5.6 Impossible Differential Key-recovery Attack on 22-

round SKINNY-n-3n

SKINNY-64-192 differs from SKINNY-128-384 in the cell size s and the tweakey schedule.

As the tweakey schedule does not influence the attack procedure, we present the two attacks

as a function of s. The 20-round attack on SKINNY-n-2n (n = 64 or 128) can be extended to

22-round attack on SKINNY-n-3n (n = 64 or 128) by appending 2 rounds, i.e., the ciphertext

c = x22. Therefore, we can use the same attack procedures of SKINNY-n-2n (n = 64 or 128)

6After this step, we have 2−s tweakeys to be excluded for each message pair, i.e., we exclude 1 tweakey
after processing 2s pairs.

75

to attack SKINNY-n-3n (n = 64 or 128) by repeating step 2 three times to extract the

tweakey cells TK19[0 : 7],TK20[0 : 7],TK21[0 : 7]. The details of the tweakey schedule can be

found in Appendix D. Moreover, as in the previous attack on 18-round SKINNY-n-n (n = 64

or 128), each structure can generate 27×s × 27×s−1 = 214×s−1 with 27×s chosen plaintexts.

Then, we take 2m structures to generate 2m+14×s−1 pairs using 2m+7×s chosen plaintexts.

Attack Complexity. The 54 tweakey cells that are involved in the analysis rounds have

only 245×s possible values. The probability that a wrong tweakey is not discarded with

one pair is 1 − 227×s−45×s = 1 − 2−18×s. Hence, after processing all the 2m+14×s−1 pairs,

we have 245×s(1 − 2−18×s)2
m+14×s−1

≈ 245×s × (e−1)2
m+14×s−1−18×s

≈ 245×s × 2−1.4×2m−4×s−1

remaining candidates for 45× s-bit of the tweakey. In order to optimize the time complexity

of the attack, we choose m = 19.84 (resp. m = 36.22) in case of SKINNY-64-192 (resp.

SKINNY-128-384). Consequently, we have 2170 (resp. 2347) remaining tweakey candidates

for the 180-bit (resp. 360-bit) of the tweakey. Therefore, the tweakey can be recovered by

exhaustively searching the 2170 (resp. 2347) remaining tweakey candidates with 212 (resp.

224) for the other tweakey bits, that are not involved in the attack, using 3 (calculated from

the unicity distance) plaintext/ciphertext pairs. Therefore, the total time complexity of the

attack is 3× 2170 × 212 + 2183.97 = 2184.79 (resp. 3× 2347 × 224 + 2372.35 = 2373.48) encryptions

in case of SKINNY-64-192 (resp. SKINNY-128-384). The data complexity of the attack

is 219.84+28=47.84 (resp. 236.22+56=92.22) chosen plaintexts in case of SKINNY-64-192 (resp.

SKINNY-128-384). The memory complexity of the attack is 274.84 (resp. 2147.22) in case of

SKINNY-64-64 (resp. SKINNY-128-384).

5.7 Conclusion

In this chapter, we presented impossible differential attacks against reduced-round versions

of all the 6 SKINNY’s variants. All of these attacks use the same impossible differential

distinguisher that covers 11-round. We extended this 11-round distinguisher by 7, 9 and 11

rounds to attack 18, 20 and 22 rounds of SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n

(n = 64 or 128), respectively, exploiting the properties of the MixColumns operation, the

simple tweakey schedule and the fact that the tweakey is only added to the first two rows

of the state. The presented attacks are currently the best known ones on all the variants of

SKINNY in the single-tweakey model.

76

Chapter 6

Cryptanalysis of Midori128

Midori is a family of SPN-based lightweight block ciphers designed to optimize the hard-

ware energy consumption per bit during the encryption and decryption operations. At ASI-

ACRYPT 2015, two variants of the cipher, Midori128 and Midori64, which support a 128-bit

secret key and a 128/64-bit block, respectively, were proposed. Recently, a Meet-in-the-

Middle attack and an invariant subspace attack were presented against Midori64 but both

attacks cannot be applied to Midori128. The only published attack against Midori128 was

launched using impossible differential and covers 10 rounds without the pre-whitening key.

In this chapter, we investigate the security of the low energy block cipher, Midori128, against

two types of attacks, namely, multiple impossible differential and truncated differential.

Firstly, by exploiting the special structure of the S-boxes and the binary linear transfor-

mation layer in Midori128, we present impossible differential distinguishers that cover 7 full

rounds including the mix column operations. Then, we exploit four of these distinguishers

to launch a multiple impossible differential attack against 11 rounds of the cipher with the

pre-whitening and post-whitening keys.

Secondly, we present truncated and multiple differential cryptanalysis of round reduced

Midori128. Our analysis utilizes the special structure of the S-boxes and binary linear trans-

formation layer in order to minimize the number of active S-boxes. In particular, we consider

differentials that contain only single bit differences in the input and output of the active

S-boxes. To keep this single bit per S-box patterns after the MixColumn operation, we

restrict the bit differences of the output of the active S-boxes, which lie in the same column

after the shuffle operation, to be in the same position. Using these restrictions, we were able

to find 10-round differential which holds with probability 2−118. By adding two rounds above

and one round below this differential, we obtain a 13 round truncated differential and use

it to perform a key recovery attack on the 13-round reduced Midori128. We also present a

multiple differential attack on the 13-round Midori128.

77

6.1 Introduction

Over the past few years, many lightweight block ciphers such as HIGHT [68], mCrypton [94],

DESL/DESXL [88], PRESENT [41], KATAN/KTANTAN [46], Piccolo [116] and PRINT-

cipher [78] were proposed. On the other hand, there has been little work that focuses on

determining the design choices that lead to the most energy efficient architecture. While

power and energy are clearly correlated, optimizing the power consumption for block ciphers

does not necessarily lead to the most energy efficient designs since a low power optimized

cipher may have high latency, i.e., it takes longer to perform the encryption and decryption

operations and hence the required energy increases. In other words, there is no guarantee

that low power block cipher designs would lead to low energy designs and vice versa.

By identifying some design choices that are energy efficient and by choosing components

specifically tailored to meet the requirements of low energy design, at ASIACRYPT 2015,

Banik et al. [18] proposed an SPN-based lightweight block cipher, Midori. In particular,

Midori is designed to optimize the hardware energy consumption per bit during the encryption

and decryption operations. Two variants of the cipher, namely, Midori128 and Midori64

which support a 128-bit secret key and a 128/64-bit block, respectively, were proposed. The

linear and non-linear operations of both versions were selected to optimize this objective.

The state in Midori is represented as a 4 × 4 matrix, where the size of each cell depends

on the version of cipher, e.g., the cell size in Midori128 is 8 bits. Midori uses 4 × 4 almost

MDS binary matrix because, compared to other MDS matrices, this almost MDS matrix is

more efficient in terms of area and signal-delay. To compensate for the low branch number

of the almost MDS matrix (4 as compared to 5 in the case of MDS), the designers utilized

an optimal cell-permutation layer in order to improve the diffusion speed and increase the

number of active S-boxes.

Recently, Midori64 has been analyzed by two different techniques. The first is a meet-

in-the-middle with differential enumeration and key dependent sieving [95] which attacks 11

rounds (resp. 12 rounds) with time, memory, and data complexities of 2122 (resp. 2125.5)

encryptions, 289.2 (resp. 2106) 64-bit blocks, and 253 (resp. 255.5) chosen plaintext. The

second is an invariant subspace attack [66] against the full cipher. The latter attack proves

that the security margin of Midori64 is 96 bits instead of 128 bits. Both of these attacks are

not applicable to Midori128.

While the designers of Midori do not claim resistance under the related, known or chosen-

key attack models [18], a related key attack against the cipher was presented in [64]. In the

78

single-key attack model, the Midori128 has been analyzed in [51, 115]. In particular, Chen

et al. [51] presented a 10-round impossible differential attack without the pre-whitening key

utilizing a 6-round distinguisher. Later on, Sasaki and Todo [115] proposed a new tool to

find impossible differential distinguishers for symmetric-key primitives, and they presented

a 7-round distinguisher for Midori128 but the last round in their distinguisher contains the

SubCell operation only.

In the first part of this chapter, we improve the previous results of the impossible differential

cryptanalysis against Midori128. More specifically, we present several impossible differential

distinguishers against Midori128 that cover 7 full rounds (including the linear transformation

layer of the the last round). These distinguishers exploit the structure of the S-boxes that are

used in Midori128 along with the binary nature of the mix column operation. In particular,

we exploit that each S-box of the 4 different 8-bit S-boxes that are used in Midori128 is

composed of two 4-bit S-boxes (see Figure 6.1). Then, we choose differences that activate only

one of these 4-bit S-boxes to find such distinguishers. Then, using four of these impossible

differential distinguishers, we present 11-round multiple impossible differential attack against

Miroi128 including the pre-whitening and post-whitening keys.

In the second part of this chapter, we present truncated differential cryptanalysis of round

reduced Midori128. Our attack utilizes the following two observations. First, Midori128 uses

four different 8-bit S-boxes, namely SSb0, SSb1, SSb2 and SSb3, where each one is composed

of two 4-bit S-boxes Sb1 in addition to input and output bit permutation. Consequently,

in order to minimize the number of active S-boxes, we consider only single bit differences

(i.e., 1, 2, 4, 8, 16, 32, 64, 128) in the input and output of the 8-bit S-boxes. Second, given the

binary nature of the almost MDS transformation, and the fact that the Hamming weight of

each row is 3, it follows that the active bytes in a column after the MixColumn operation

have a single bit difference if and only if the active bytes in the input column are all equal and

each one has a single active bit. Hence, to maintain the pattern of single bit differences after

the MixColumn operation, we restrict the bit differences of the output of the active S-boxes,

which lie in the same column after the shuffle operation, to be in the same position. Based

on these observations, we are able to find a 10-round differential that holds with probability

2−118. Then, we added two rounds above and one round below this 10-round differential to

obtain a 13-round truncated differential [80] that holds with probability 2−230. Using this

truncated differential, we can recover the master key of the 13-round reduced cipher with

time and data complexities of 2119 encryptions, and 2119 chosen plaintext, respectively. We

also present a multiple differential attack [47] on the 13-round reduced cipher with time and

data complexities of 2125.7 encryptions and 2115.7 chosen plaintext, respectively.

79

The rest of the chapter is organized as follows. In section 6.2, we provide a brief description

of Midori128. In section 6.3, we present our 7 rounds impossible differential distinguishers

against Midori128 and give the details of our 11 rounds multiple impossible differential attack

on Midori128. In section 6.4, we describe and analyze the algorithm we use to efficiently

search for long differentials with small number of active S-boxes and give the details of our

truncated differential attack on Midori128 reduced to 13 rounds in addition to our multiple

differential attack. Finally, the chapter is concluded in section 6.5.

6.2 Specifications of Midori128

Midori128 can be considered as a variant of Substitution Permutation Networks (SPNs).

The state in Midori128 is represented as a 4× 4 array of bytes as follow:

S =

s0 s4 s8 s12

s1 s5 s9 s13

s2 s6 s10 s14

s3 s7 s11 s15

Midori128 iterates over 20 rounds. Each round, except the last one, has 3 layers: S-layer

(SubCell) which maps {0, 1}128 → {0, 1}128, P -layer (ShuffleCell andMixColumn) which maps

{0, 1}128 → {0, 1}128 and a key-addition layer (KeyAdd) which maps {0, 1}128 × {0, 1}128 →

{0, 1}128. The last round contains only the S-layer. Moreover, before the first and after the

last rounds, prewhitening and postwhitening are performed using WK. In what follows, we

show how these operations update the 128-bit state S:

- SubCell: A nonlinear layer applies one of four 8-bit S-boxes, namely SSb0, SSb1, SSb2,

and SSb3, on each byte of the state S in parallel, where si ← SSb(i mod 4) [si], 0 ≤ i ≤ 15.

As shown in Figure 6.1, each 8-bit S-box SSbi is composed of 8-bit input permutation,

pi, two 4-bit S-boxes (Sb1, see Table 6.1) and 8-bit output permutation, p−1
i .

- ShuffleCell: The bytes of the state S is permuted as follow:

(s0, s1, · · · , s15) ← (s0, s10, s5, s15, s14, s4, s11, s1, s9, s3, s12, s6, s7, s13, s2, s8)

- MixColumn: Each column in the internal state is multiplied by a binary matrix M ,

where

80

Table 6.1: 4-bit bijective S-box Sb1 in hexadecimal form [18]

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

Sb1[x] 1 0 5 3 e 2 f 7 d a 9 b c 8 4 6

M = M−1 =

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

Hence, the internal state is updated as follows:

(si, si+1, si+2, si+3)
t ← M(si, si+1, si+2, si+3)

t, i = 0, 4, 8, 12.

- KeyAdd: Where 128-bit round key RKi is XORed with the state S.

���Ç

��È

��È

�

ÉÊË

ÌÊË

�Í

�Î

�

��È

��È

� �

ÉÊË

ÌÊË

�Í

�Î

��È

��È

� �

ÉÊË

ÌÊË

�Í

�Î

��È

��È

� �

ÉÊË

ÌÊË

�Í

�Î

���Ï ���Ð ���Ñ

Figure 6.1: SSb0, SSb1, SSb2, and SSb3 [18]

The data encryption procedure of Midori128 is illustrated in Algorithm 7 where R = 20

denotes the number of rounds. The prewhitening and postwhitening key WK in Midori128

are equal to the master key K, the rounds keys RKi = K ⊕ βi, 0 ≤ i ≤ 18, where βi

is a constant, X is the plaintext, and Y is the ciphertext. Throughout our analysis, we

measure the time complexity of our attack in terms of the equivalent number of reduced-

round Midori128 encryptions. For further details about the design rational of the cipher, the

reader is referred to [18].

The following notations are used throughout the rest of the chapter:

81

Algorithm 7: Data Encryption Algorithm [18]

Data: X,WK, RK0, ..., RKR−2

Result: Y
S ← KeyAdd(X,WK);
for i ← 0 to R − 2 do

S ← SubCell(S);
S ← ShuffleCell(S);
S ← MixColumn(S);
S ← KeyAdd(S,RKi);

S ← SubCell(S);
Y ← KeyAdd(S, WK);

- at: Transposition of the vector or the matrix a.

- K: The master key.

- RK i: The 128-bit round key used in round i.

- WK: The 128-bit whitening key.

- xi: The 128-bit input to the SubCell operation at round i.

- yi: The 128-bit input to the ShuffleCell operation at round i.

- zi: The 128-bit input to the MixColumn operation at round i.

- wi: The 128-bit input to the KeyAdd operation at round i.

- xi[j]: The jth byte of xi, where 0 ≤ j < 16.

- xi[jt](resp.xi[jb]): The top (resp. bottom) 4-bit of p1(xi[j]).

- xi[j, · · · , l]: The bytes j, · · · , l of xi.

- xi[j · · · l]: The bytes from j to l of xi, where j < l.

- ∆xi, ∆xi[j]: The difference at state xi and byte xi[j], respectively.

Throughout our analysis, we utilize the differntial property of the S-box (see Proposition

1).

82

6.3 Improved Multiple Impossible Differential Crypt-

analysis of Midori128

6.3.1 7-round Impossible Differential Distinguishers of Midori128

All of our 7-round distinguishers begin with one active byte w1[i], 0 ≤ i ≤ 15, such that

only the top (resp. bottom) 4 bits of pi mod 4(w1[i]) are active and ends with two active bytes

x9[i, j](i, j ∈ {4l, 4l + 1, 4l + 2, 4l + 3}, 0 ≤ l < 4, i 6= j) where only the top (resp. bottom)

4 bits of pi mod 4(x9[i]) and pi mod 4(x9[j]) are active. It can be verified that there are 24 such

impossible differential distinguishers out of the possible 2 × 16 × 4 ×
(
4
2

)
= 768, where we

have 16 possible positions for w1[i], and for x9[i, j] we have 4 columns where in each column

we have
(
4
2

)
combinations for the positions of i, j, and in each one of these patterns we can

activate the top or bottom 4-bit S-box. One of these distinguishers is illustrated in Figure 6.2

and is based on the following propositions.

Proposition 7 Let ∆ = xx0000xx, where 0 and x denote the inactive and active/inactive

bits, respectively, and at least one of the x bits should be active. The probability of ∆
SSb1−→

∆ = 1.

Proof. This property follows from the structural properties of the S-box, as shown in

Figure 6.3. As depicted in this figure, after applying the input bit permutation p1, the input

of the top 4-bit S-box Sb1 has the difference xxxx (and hence it is active) while the input of

the bottom 4-bit S-box Sb1 has the difference 0000 (and hence it is inactive). Since the S-box

Sb1 is bijective, a non-zero input difference to the S-box, implies a non-zero output difference.

Therefore, the outputs of the top and bottom 4-bit S-boxes Sb1 have the difference xxxx and

0000, respectively, with probability one. Then, applying the bit permutation p−1
1 makes the

output of the 8-bit S-box SSb1 has the difference pattern ∆. This property is also applicable

to SSb−1
1 .

Proposition 8 Let α and β have the same difference pattern ∆ defined in Proposition 7, and

α is not necessarily equal to β. The input (hexadecimal) difference (0α00, 0000, 0000, 0000)

cannot propagate to the output (hexadecimal) difference (0000, 00ββ , 0000, 0000) after com-

plete 7 rounds of Midori128.

Proof. The difference patten of α and β implies that only the top 4-bit S-box Sb1 of the

8-bit S-box SSb1 will be active. From the forward direction, the difference pattern α will be

preserved until the internal state x3. Then applying SSb0 and SSb2 on ∆x3[4] and ∆x3[6],

respectively, will change it in a way that guarantees that the two 4-bit S-boxes are active and

applying SSb1 on ∆x3[5] will preserve the difference pattern α (see Proposition 7). Then,

83

Ò Ó Ô ÕÖ

Õ × Ø ÕÙ

Ö Ú ÕÒ ÕÓ

Ù Û ÕÕ Õ×

ÜÝ

Þß àß ÜÝ

Þß

á

á áàß ÜÝ

á

á á

á á á

á á

Þß

á á á á

á á á á

á á á

á á á á

á á

á á

àß ÜÝ

á á

á á

Þß á â á

á á

â â

â

â

àß ÜÝ

â ã

ã

â ã

Þß

â

â

â â

â ä

â ä

â â

â â

â

àß ÜÝ

ã â ä ã

â â

ã ã â

â ã

Þß

ä

ä

â

â

â ä

â ä

àß ÜÝ

â

â â

ã ä

â ä

á

á á Þß

á

á

á á á á

á

á

á á

á á á

á á

àß ÜÝ

�å

�æ

�ç

�è

�é

�ê

�ë

ì

Þí

Þí

á á

á á

Þí

ì ì

ä ì

ì ì

Þí

ì ì ì

ä ì ì

ì ì ì

ì ä ì

Þí

Þí

Þí

�å

�æ

�ç

�è

�é

�ê

�å

�æ

�ç

�è

�é

�ê

�î

�å

�æ

�ç

�è

�é

�ê

�ï �ï �ï �ï

�����	��
������	��

�
��		��	

�����	��
���������

�	���
��		��	

�����	��
��������������

�
��		��	�����	�

�����	��
���

������
��
��

á
�����	��
�����������

�
��		��	

�����	��
��������������

�
��		��	�����	�

á á á á

á á á

á á á á

á á á á

�è

á

á á

á á á

á á

��������	����

Figure 6.2: 7-round impossible differential distinguisher of Midori128

84

�
�

�

�

�
�

�

�

�

�

�

�

�
�
�
�

�
�
�
�

�

�

�

�

�
�

�

�

�
�

�

�

���ð

��ð

��ð

Figure 6.3: The propagation of a difference pattern ∆ = xx0000xx through SSb1

the differences in the internal state y3 can be propagated in the same manner until state x5

that will have only one byte preserving the α difference pattern at ∆y5[5]. From the other

direction, since ∆x9[6] = ∆x9[7] and each one of these differences preserve the β difference

pattern, ∆z8[6] will be equal to ∆z8[7] and each one of these resulting differences will pre-

serve the β difference pattern. From Proposition 7, applying SSb−1
1 on ∆y8[1] preserves the β

difference pattern, while applying SSb−1
3 on ∆y8[11] ensures that the top and bottom 4 bits

after applying the bit input permutation p1 of SSb1 are active. Then, the differences can be

propagated in the same manner until state w5. From the shuffle and mix column operations,

we know that ∆y5[5] = ∆z5[2] = ∆w5[0] ⊕ ∆w5[1] ⊕ ∆w5[3] which means that the bottom

4-bit of p1(∆y5[5]) are active. However, from the forward direction, we know that the bottom

4-bit of p1(∆y5[5]) are inactive as this byte satisfies the α difference pattern. Therefore, there

is a contradiction between the byte ∆y5[5] in the forward and backward directions, and hence

the whole truncated differential characteristic holds with probability exactly 0. The previous

proposition also holds for α and β have the difference pattern 00xxxx00.

In our attack we exploit the following 4 impossible differential distinguishers:

(0α00, 0000, 0000, 0000)9 (0000, 00ββ, 0000, 0000)(α = β = xx0000xx) (6.1)

(0α00, 0000, 0000, 0000)9 (0000, 00ββ, 0000, 0000)(α = β = 00xxxx00) (6.2)

(0α00, 0000, 0000, 0000)9 (0000, β00β, 0000, 0000)(α = β = xx0000xx) (6.3)

(0α00, 0000, 0000, 0000)9 (0000, β00β, 0000, 0000)(α = β = 00xxxx00) (6.4)

As can be seen, all the four distinguishers above begin with one active byte which has only

4 active bits at position 1, and end with two active bytes where each byte has only 4 active

bits at the same column. It should be noted that the obtained 24 distinguishers can be

categorized into 6 groups, where each group contains 4 patterns similar to the presented

above, and anyone of theses groups can be used in our attack instead of the above four

distinguishers.

85

6.3.2 11-round Multiple Impossible Differential of Midori128

In this section, we present an 11-round multiple impossible differential attack against Mi-

dori128 involving both the pre-whitening and post-whitening keys, see Figure 6.4. In what

follows, we describe the details of our attack which is decomposed of 2 phases: a data collec-

tion phase, where we generate enough message pairs to exclude the wrong keys involved in

the analysis rounds and a key recovery phase, where we use the collected message pairs to

identify the key candidates.

Data Collection. In this phase, we use the structure technique in order to reduce the data

complexity of the attack. Our structure takes all the possible values in bytes 1, 2, 5, 7, 10, 11, 13,

14, 15 while the other bytes take fixed value. Therefore, one structure generates 29×8 ×

(29×8 − 1)/2 ≈ 2143 possible message pairs. Then, we create 4 lists Li, 1 ≤ i ≤ 4, where

each list Li contains the pairs which satisfy the plaintext and ciphertext differences of the

ith impossible differential. For example, L1 is indexed by the bottom 4 bits of p1(P [1])

and the following bytes of the ciphertext C[0, 1, 2, 3, 4, 5, 6, 7, 11, 12]. Therefore, L1 contains

2143 × 2−4 × 2−80 = 259 message pairs. Similarly, each one of the other lists contains 259

message pairs. We take 2m structures in order to launch the attack, and hence we have 2m+59

message pairs in each list Li. Therefore, we query the encryption oracle 2m+72 times.

Key Recovery. We identify the key candidates by performing the following steps in parallel

for each list Li:

Step 1. Guess ∆z9[12] and propagate it linearly forward to compute ∆x10[13, 14, 15]. From

the knowledge of the ciphertext, compute ∆y10[13, 14, 15]. Using the S-box property (see

Proposition 1), we can get one solution, on average, for y10[13, 14, 15]. Therefore, we have 28

values for K[13, 14, 15].

Step 2. For the lists L1 and L3 (resp. L2 and L4), we guess ∆x1[5t] (resp. ∆x1[5b]) and

propagate it linearly backward to compute ∆y0[1, 11, 14]. From the knowledge of the plain-

text, we compute ∆x0[1, 11, 14]. Using the S-box property, we get one solution, on average,

for x0[1t, 11, 14] (resp. x0[1b, 11, 14]). Therefore, we have 24 values for K[1t, 11, 14] (resp.

K[1b, 11, 14]), and in total we have 28 × 24 × 2−8 = 24 values for K[1t, 11, 13, 14, 15] (resp.

K[1b, 11, 13, 14, 15]) because we have 8-bit filter on K[14].

Step 3. Guess ∆x1[15] and propagate it linearly backward to compute ∆y0[2, 7, 13]. From

the knowledge of the plaintext, compute ∆x0[2, 7, 13]. Using the S-box property, we get one

solution, on average, for x0[2, 7, 13]. Therefore, we have 28 values for K[2, 7, 13], and in total

we have, 24×28×2−8 = 24 values for K[1t, 2, 7, 11, 13, 14, 15] (resp. K[1b, 2, 7, 11, 13, 14 , 15])

corresponding to lists L1 and L3 (resp. L2 and L4) because we have an 8-bit filter on K[13].

Step 4. Repeat Step 3, but guess ∆x1[0] instead of ∆x1[15]. Consequently, we have 2
8 values

86

�� �� ��

�� �� ��

�ñ

�ò

��

��

�ò �ò �ò

�ñ �ñ �ñ

�

��

ó

ó ó

ô

ó

õö
�� ��

�

÷

÷ ÷

÷

÷

��

øù øú û

øø øü øý
��

õö ��

�òñ �òñ

û

þ øý
��

��������	
������������������������������

��ñ

��ÿ

���

��

�� �� �� ��

�	
���	���	�	����	

���������

�	
���	���	�	��������	���������	

���	������	
������	���	�	

�����
��	�����������

�	
���	���	����	��
�	�����	���	

������	
������	���	�	

�����
��	�����������

�	
���	���	�	��������	���������	

���	������	
������	���	����	�	

�����
��	�����������

�	
���	���	�	��������	���������	

���	������	
������	���	����	�	

�����
��	�����������

�	
���	���	����	��
�	�����	���	

������	
������	���	����	�	

�����
��	�����������

�	
���	���	����	��
�	�����	���	

������	
������	���	����	�	

�����
��	�����������

�	
���	���	�	

��������	���������

�	
���	���	�	

��������	���������

Figure 6.4: 11-round multiple impossible differential cryptanalysis of Midori128

87

for K[5, 10, 15], and in total we have 24×28×2−8 = 24 values for K[1t, 2, 5, 7, 10, 11, 13, 14, 15]

(resp. K[1b, 2, 5, 7, 10, 11 , 13, 14, 15]) corresponding to lists L1 and L3 (resp. L2 and L4) be-

cause we have 8-bit filter on K[15].

Step 5. For the lists L1 and L3 (resp. L2 and L4), guess ∆w1[1t] (resp. ∆w1[1b]) and propa-

gate it linearly backward to deduce K[0, 5t, 15] (resp. K[0, 5b, 15]) using the S-box property.

Therefore, we have 24 values forK[0, 5t, 15] (resp. K[0, 5b, 15]), and in total we have, 24×24×

2−12 = 2−4 values for K[0, 1t, 2, 5, 7, 10, 11, 13, 14, 15] (resp. K[0, 1b, 2, 5, 7, 10, 11, 13, 14, 15])

because we have 12-bit filter on K[5t, 15] (resp. K[5b, 15]).

Step 6. For lists L1 and L2, guess ∆z9[11] and propagate it linearly forward to deduce

K[8, 9, 10] using the S-box property. Therefore, we have 28 values for K[8, 9, 10], and in total

we have, 2−4×28×2−8 = 2−4 values forK[0, 1t, 2, 5, 7, 8, 9, 10, 11, 13, 14, 15] andK[0, 1b, 2, 5, 7,

8, 9, 10, 11, 13, 14, 15] corresponding to L1 and L2, respectively, because we have 8-bit filter

on K[10]. For lists L3 and L4, guess ∆z9[5] and propagate it linearly forward to deduce

K[4, 6, 7] using the S-box property. Therefore, we have 28 values for K[4, 6, 7], and in total

we have, 2−4×28×2−8 = 2−4 values for K[0, 1t, 2, 4, 5, 6, 7, 10, 11, 13, 14, 15] and K[0, 1b, 2, 4, 5

, 6, 7, 10, 11, 13, 14, 15] corresponding to L3 and L4, respectively, because we have 8-bit filter

on K[7].

Step 7 For list L1 (resp. L2), compute ∆x9[6, 7] and keep only the keys that make ∆x9[6] =

∆x9[7] where each one has the xx0000xx (resp. 00xxxx00) difference pattern. Therefore, we

have 2−4×2−12 = 2−16 values forK[0, 1t, 2, 5, 7, 8, 9, 10, 11, 13, 14, 15] (resp. K[0, 1b, 2, 5, 7, 8, 9,

10, 11, 13, 14 , 15]), i.e., we remove 1 key value for the 92-bit key K[0, 1t, 2, 5, 7, 8, 9, 10, 11, 13

, 14, 15] (resp. K[0, 1b , 2, 5, 7, 8, 9, 10, 11, 13, 14, 15]) after processing 216 message pairs. For

list L3 (resp. L4), compute ∆x9[4, 7] and keep only the keys that make ∆x9[4] = ∆x9[7] and

each one has the xx0000xx (resp. 00xxxx00) difference pattern. Therefore, we have 2−4 ×

2−12 = 2−16 values forK[0, 1t, 2, 4, 5, 6, 7, 10, 11, 13, 14, 15] (resp. K[0, 1b, 2, 4, 5, 6, 7, 10, 11, 13,

14, 15]).

Attack Complexity. As explained in the previous steps, for each list Li, we have 92

key bits involved in the analysis rounds, and for each message pair we remove, on average,

2−16 values. Therefore, the probability that a wrong key is not discarded for each message

pair is 1− 2−16/292 = 1− 2−108. Hence, after processing all the 2m+59 message pairs, we have

292 × (1− 2−108)2
m+59

≈ 292 × (e−1)2
m+59−108

≈ 292 × 2−1.44×2m−49
remaining candidates for 92

bits of the key. For each list Li, in order to balance between the time and data complexities,

we evaluated the time complexity of the previous steps as a function of m (see Table 6.2). As

a result, we choose m = 49. Hence, for each list Li, we have 290.56 remaining key candidates

for 92 bits of the key. We have 88 bits in common between L1 and L2, and 88 bits in common

between L3 and L4. Therefore, we have only 290.56× 290.56 × 2−88 = 293.12 remaining key can-

didates for 96-bit of K[0, 1, 2, 5, 7, 8, 9, 10, 11, 13, 14, 15], and 293.12 remaining key candidates

88

for 96 bits of K[0, 1, 2, 4, 5, 6, 7, 10, 11, 13, 14, 15]. For the resulting 2 lists, we have 80 bits in

common. Finally, we have 293.12× 293.12× 2−80 = 2106.24 remaining key candidates for 112-bit

of K[0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15] that can be exhaustively searched along 216 values

for the 16 bits of the key that are not involved in the attack. The data complexity can be

determined from the data collection phase, where we take 2m structures. Therefore, the data

complexity of the attack is 2m+72 = 249+72 = 2121 chosen plaintexts. The time complexity

of Step 1 - Step 7 is 4 × 2116.69 = 2118.69. Hence, the time complexity of the attack is dom-

inated by the data collection phase and the exhaustive search which can be estimated as

2121 + 216 × 2106.24 = 2122.75. The memory complexity of the attack is dominated by storing

2m+59 pairs for each list Li to remove the wrong keys. Hence, the memory complexity is

given by 4× 4× 249+59 = 2112 128-bit blocks.

Table 6.2: Time complexity of the different steps, for each list Li, of the attack on 11-round
Midori128, where NK denotes the number of keys to be excluded

Step Time Complexity (in 11-round encryptions) NK m = 49

1 2× 2m+59 × 28 ×
6

2× 16× 11
≈ 2m+62.13 28 2111.13

2 2× 2m+59 × 212 ×
5

2× 16× 11
≈ 2m+65.86 24 2114.86

3 2× 2m+59 × 212 ×
6

2× 16× 11
≈ 2m+66.13 24 2115.13

4 2× 2m+59 × 212 ×
6

2× 16× 11
≈ 2m+66.13 24 2115.13

5 2× 2m+59 × 28 ×
5

2× 16× 11
≈ 2m+61.86 2−4 2110.86

6 2× 2m+59 × 24 ×
6

2× 16× 11
≈ 2m+58.13 2−4 2107.13

7 2× 2m+59 × 2−4 ×
4

2× 16× 11
≈ 2m+49.54 2−16 298.54

It should be noted that the use of four impossible differential distinguishers allows us to

use the minimum possible data complexity which results in only one remaining message pair

that satisfy the plaintext, ciphertext differences and the 2−108 probability of discarding wrong

keys. This implies that we have, for each one of the corresponding lists, Li, 1 ≤ i ≤ 4, a 2−1.44

filtration for the 92 key bits involved in the attack. Using the intersection between these four

lists increases the sieving of remaining key candidates. On the other hand, increasing the

number of impossible differential distinguishers to v > 4, with the same data complexity,

will reduce the time complexity of the exhaustive search of the remaining candidates as it

excludes more candidates, and increases the time complexity of Step 1 - Step 7 of the attack

89

to v × 2116.69. Therefore, using v > 4 impossible differential distinguishers can only achieve

some slight improvement in the overall time complexity of the attack.

6.4 Truncated and Multiple Differential Cryptanalysis

of Reduced Round Midori128

6.4.1 A 10-round Differential of Midori128

As mentioned above, in order to minimize the number of active S-boxes, we consider dif-

ferentials that have only single bit differences in the input and output of the active 8-bit

S-boxes. In this section, we describe and analyze the algorithm we use to efficiently find such

differentials whose probabilities are greater than 2−128. In each round, we have 4 operations.

The operations that can disturb the single bit difference propagation patterns are the SubCell

and MixColumn operations. From the structure of the S-boxes, it follows that for any active

S-box and for a given 1-bit input difference, there are at most 4 possible output differences

of 1-bit difference because only 1 4-bit S-box will be active. Furthermore, from the proper-

ties of the binary almost MDS matrix, preserving single bit differences propagation patterns

requires that we restrict the bit differences of the output of the active S-boxes, which lie in

the same column after the shuffle operation, to be in the same position. As a result, the

active bytes in each column after the MixColumn operation have the same value. Therefore,

at each round we have at most (8 × 15)4 ≈ 228 possible input differences. The term 8 in

the previous formula denotes the number of possible values of the difference in each column

(1, 2, 4, · · · , 128). The term 15 denotes the total number of combinations for active bytes

within each column and the exponent 4 denotes the total number of columns. As noted

above, for a given input difference ∆Si at the beginning of each round, after the S-box layer

the values of the active bytes, which lie in the same column after the shuffle operation, should

be equal. Therefore, for each input difference i, we have a set Ωi which contains at most 44

possible output differences (in each column we have at most four 1-bit differences, and we

can have at most four active columns.)

Algorithm 8 describes the procedure used to find the maximum number of rounds r, such

that a differential with the above S-box propagation patterns exists and its differential prob-

ability is greater than 2−128. The algorithm run time is upper bounded by 228 × 44 × r.

It utilizes four tables where each table has 228 entries corresponding to the possible input

differences at each round. In what follows we describe the use of each table:

1. Each entry i in the table InputDiffProb indicates the probability to reach the difference

i at the beginning of the considered round.

90

2. Each entry i in the table OutputDiffProb indicates the probability to reach the difference

i at the end of the considered round.

3. Each entry i in the table InputParent indicates the input difference used at the begin-

ning of round 0 to reach difference i at the beginning of the considered round. The

value -1 is used to indicate that the difference i cannot be reached from any input

difference.

4. Each entry i in the table OutputParent indicates the input difference used at the be-

ginning of round 0 to reach difference i at the end of the considered round. The value

-1 indicates that the difference i cannot be reached from any input difference.

As explained in Algorithm 8, we iterate over the input differences that have differential

probability > 0 round by round, i.e., at each round we propagate all the input differences

and begin with the obtained differences as input to the next round. In our implementation,

the 28-bit index i encodes the state difference ∆S as follows: we use 7 bits for each one of

the four columns where these 7 bits are divided into two parts. The first 3 bits represent the

value of the difference of the active bytes in the column and the remaining 4 bits represent

the different 15 combinations of the active bytes within the column. After applying the 3

operations: SubCell, ShuffleCell, and MixColumn, we have 3 cases: (i) this difference did

not appear before (Outparent[j] = -1). In this case we set its probability and parent, (ii)

this difference appeared previously and its previous parent is the same as the new parent.

Therefore, we add the probabilities, and (iii) this difference appears previously but with a

different parent. In this case, we choose the parent with the higher probability. At the end of

each round, we copy the OutputDiffProb and OutParent into InputDiffProb and InputParent,

respectively, and initialize OutputDiffProb and OutParent to begin another round.

Using a PC with Intel(R) Xeon(R) CPU E3-1280 V2 @ 3.6 GHz and 32 GB RAM, a non-

optimized implementation of Algorithm 8 terminates in about 3 hours and outputs r = 10

rounds. A 10-round differential which holds with probability 2−118 is illustrated in Figure 6.5

. This 10-round differential has 2554 characteristics that are distributed as shown in Table

6.3. The characteristic that holds with probability 2−123 is detailed in Table 6.4.

��������

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

Figure 6.5: A 10 rounds differential of Midori128

91

Table 6.3: The characteristics distribution of the 10-round differential

of characteristics Probability of each characteristic

1 2−123

7 2−124

23 2−125

50 2−126

83 2−127

2390 < 2−127

Table 6.4: The 2−123 10-round characteristic of Midori128

i Input difference at round i (in hexadecimal)

0 00000000 00100000 00001000 00000000

1 00000000 00000000 00000000 00080800

2 40004040 00000000 00101010 00000000

3 40400040 40400000 08080008 08080000

4 00400040 00000040 08000000 08000800

5 40000040 00404000 08000008 00000000

6 40404000 00400040 08080008 08000800

7 00400000 40004000 00080000 08000800

8 00000000 00400000 00000800 00000000

9 00000000 00000000 00000000 00080800

10 40004040 00000000 00101010 00000000

92

6.4.2 13-round Truncated Differential Cryptanalysis of Midori128

In this section, we show how we can extend the differential obtained in the previous section

by two rounds above, and one round below, to obtain a truncated differential over 13 rounds

(see Figure 6.6). Then, we present a key recovery attack on Midori128 reduced to 13 rounds

using this truncated differential.

The total probability of the 13-round differential can be calculated from its three parts.

First, the differential probability of the top two rounds which is 2−112 and can be computed

as follows: (i) 4 → 2, 3 → 1, 4 → 2, and 3 → 1 transitions over MixColumn (z0 → w0) which

happens with probability 2−16 × 2−16 × 2−16 × 2−16 = 2−64, (ii) 3 → 1 and 3 → 1 transitions

over MixColumn (z1 → w1) which happens with probability 2−16×2−16 = 2−32 and (iii) w1[5]

and w1[10] equal difference 16 which happens with probability 2−8×2−8 = 2−16. Second, the

differential probability of 10-round is 2−118, calculated by Algorithm 8. Third, the bottom 1

round has a differential probability equals to 1. Therefore, the differential probability of the

13-round is 2−230.

In what follows, we show how we can perform our key recovery attack on Midori128 re-

duced to 13 rounds using the above differential. The attack is decomposed of two steps.

The first step is the data collection in which we collect many pairs of messages to guarantee

that at least one of them confirms to the 13-round truncated differential in Figure 6.6. The

second step is the key recovery in which the collected data pairs are used to identify the key

candidates.

Data Collection. To reduce the number of required chosen plaintext and get enough pairs

to launch the attack, we use the structure technique. Here, our structure takes all the pos-

sible values in all the bytes except bytes 2 and 11. These bytes take fixed value. Therefore,

one structure generates 214×8 × (214×8 − 1)/2 ≈ 2223 possible pairs. We need to collect 2230

message pairs because the total probability of the 13-round differential is 2−230. Since each

structure contains 2223 message pairs, we need to collect 27 structures to find the right pair.

Therefore, we ask the encryption oracle for the encryption of 2119 messages.

Key Recovery. In this step, we try to identify the key candidates that confirm to the

10-round differential. First, we try to identify the number of key suggestions of 26 bytes

WK[0, 1, 3 · · ·10, 12 · · ·15], RK0[1, 3, 6, 9, 11, 14], and WK[4, 5, 6 , 12, 13, 15] that correspond

to each pair of messages. This can be achieved as follows: to deduce the values of the 6 bytes

WK[4, 5, 6, 12, 13, 15], we know that the 6 bytes ∆x12[4, 5, 6, 12, 13, 15] only take one value, the

same difference of the end of the 10-round differential since the key add layer does not change

93

Algorithm 8: Find the maximum number of rounds, r, that has a differential
which holds with probability > 2−128 considering only the single bit difference for
the active S-boxes

Result: X : Input difference, Y : Output difference, Probability: The probability
of the differential, r: The number of rounds covered by the differential

for i ← 0 to 228 − 1 do
InputDiffProb[i] ← 1 ,OutputDiffProb[i] ← 0;
InputParent[i] ← i ,OutputParent[i] ← −1;

r ← 0, valid← true;
while valid do

for i ← 0 to 228 − 1 do
if InputDiffProb[i] = 0 then

continue;

map i to state ∆S (see section 3);
forall the entries in Ωi do

∆Stemp ← nextvalue(Ωi);
prob ← Probability (∆S → ∆Stemp);
if prob = 0 then

continue;

∆Stemp ← ShuffleCell(∆Stemp);
∆Stemp ← MixColumn(∆Stemp);
map ∆Stemp into index j;
if OutParent[j] = −1 then

OutputDiffProb[j] = InputDiffProb[i]× prob;
OutputParent[j] = InputParent[i];

else if OutParent[j] = InputParent[i] then
OutputDiffProb[j] = InputDiffProb[i]× prob + OutputDiffProb[j];

else
if InputDiffProb[i]× prob > OutputDiffProb[j] then

OutputDiffProb[j] = InputDiffProb[i]× prob;
OutputParent[j] = InputParent[i];

InputDiffProb ← OutputDiffProb, InputParent ← OutParent;
initialize OutputDiffProb to 0 , initialize OutputParent to -1;
get the index l of the maximum entry in InputDiffProb;
if InputDiffProb[l] <= 2−128 then

valid ← false;

r ← r + 1;

Get the index l of the maximum entry in InputDiffProb;
X ← InputParent[l] , Y ← l ,Probability ← InputDiffProb[l];

94

��

�

�� �� �� ��

�	 �
 ��

�� �� �� ��
��

�	 �
 ��
�

� �

�

��������	�
������
��

���

�	

��� ���

��

�

Figure 6.6: 13-round truncated differential of Midori128

the difference. The knowledge of the ciphertext allows to compute ∆y12[4, 5, 6, 12, 13, 15]. Us-

ing the differential property of the S-box, we can evaluate y12[4, 5, 6, 12, 13, 15]. The knowl-

edge of the ciphertext with y12[4, 5, 6, 12, 13, 15] allows us to deduce the values of the 6 bytes

WK[4, 5, 6, 12, 13, 15]. From the other side, we know the difference ∆W1 since it is the same

difference at the beginning of the 10-round differential. Then we propagate this difference

linearly trough MixColumn and InvShuffleCell to get the difference ∆y1. ∆y1 has only 6

active bytes and each, after the SubCell operation, has only 6 possible differences. Therefore,

we have 66 ≈ 215.6 possible differences at ∆x1. Then after the MixColumn and InvShuffleCell,

we have only 215.6 possible differences at ∆y0. The knowledge of the plaintext allows us to

compute the difference at ∆x0. Then, guessing the 215.6 possible differences of ∆y0 and using

the S-box proposition, we get the value of x0[0, 1, 3 · · ·10, 12 · · ·15]. From the knowledge of

the plaintext we can drive the value of WK[0, 1, 3 · · ·10, 12 · · ·15]. As a result we have 215.6

key candidates for WK[0, 1, 3 · · ·10, 12 · · ·15] and WK[4, 5, 6, 12, 13, 15] but we have 6 bytes

common; therefore, we have only 215.6−48 = 2−32.4 key candidates. To derive the 6 bytes value

RK0[1, 3, 6, 9, 11, 14], we know that we have only one difference at ∆y1. Then we get one key

candidate for RK0[1, 3, 6, 9, 11, 14] but also we have 5 bytes filter between WK[0, 1, 3 · · ·10

, 12 · · · 15] and RK0[1, 3, 6, 9, 11, 14], from the key schedule as the whitening key is the mas-

95

ter key K and the round keys RKi = K ⊕ βi and βi is constant. Therefore, we have only

2−32.4 × 2−40 = 2−72.4 key candidates for each message pair. To identify the remaining key

candidates for all the message pairs, we should identify the remaining message pairs after the

ciphertext filter. The ciphertext has a filter probability of 2−112.3 and is computed as follows:

we have 10 bytes of zero difference which have probability of 2−80 and the remaining 6 bytes

have probability of 215.7−48 = 2−32.3 since we know that each byte of the 6 active bytes in

∆x12 has only one difference and after the S-box layer 5 bytes out of these 6 active bytes,

each, has 6 possible difference and the remaining byte has 7 possible differences. Hence, we

have 65× 7 = 215.7 possible differences at ∆y12 which also the same differences in the 6 bytes

in the ciphertext. Therefore, after the ciphertext filter, we have 2230×2−112.3 = 2117.7 remain-

ing message pairs to identify the key candidates. As a result, we have 2117.7 × 2−72.4 = 245.3

remaining key candidates for 15 bytes of the master key K.

In order to determine efficiently the remaining key candidates for all the remaining message

pairs after the ciphertext filter, we perform the following steps:

1. From the ciphertext side, we have only one value for the active bytes of ∆x12. Then,

using the S-box proposition, we can derive the 6 bytes WK[4, 5, 6, 12, 13, 15]. Therefore,

we have 2117.7 key candidates for WK[4, 5, 6, 12, 13, 15] ≡ K[4, 5, 6, 12, 13, 15].

2. From the plaintext side, by guessing the 6 possible differences of ∆w0[14] and propa-

gating them backward through the linear operations MixColumn and InvShuffleCell we

can know the values of ∆y0[7, 8, 13]. Hence, we can use the S-box proposition to derive

the values of x0[7, 8, 13]. Then, knowing the plaintext and x0[7, 8, 13] allows to derive

WK[7, 8, 13] ≡ K[7, 8, 13]. Using the one value of the difference ∆y1[14], we can derive

the value of x1[14] using the S-box proposition. Then, we can derive RK0[14] ≡ K[14].

At this stage, we have 2117.7 key candidates and we guess 6 values to deriveK[7, 8, 13, 14]

but we have one filter of K[13] between this step and the previous step. Therefore, in

total, we have 2117.7× 6× 2−8 = 2112.3 remaining key candidates for K[4 · · ·8, 12 · · ·15].

3. By guessing the 6 possible differences of ∆w0[6] and propagating them backward

through the linear operations MixColumn and InvShuffleCell, we can determine the

values of ∆y0[1, 4, 14]. Hence, we can use the S-box proposition to derive the val-

ues of x0[1, 4, 14]. Then, knowing the plaintext and x0[1, 4, 14] allows us to derive

WK[1, 4, 14] ≡ K[1, 4, 14]. Using the one value of the difference ∆y1[6], we can derive

the value of x1[6] using the S-box proposition. Then, we can derive RK0[6] ≡ K[6]. At

this stage we have 2112.3 key candidates and we guess 6 values to derive K[1, 4, 6, 14] but

we have 3 filters of K[4, 6, 14] between this step and the previous step. Therefore, in

total we have 2112.3×6×2−24 = 290.9 remaining key candidates for K[1, 4 · · ·8, 12 · · ·15].

96

4. By guessing the 62 possible differences of ∆w0[1, 3] and propagating them backward

through the linear operations MixColumn and InvShuffleCell we can determine the

values of ∆y0[0, 5, 10, 15]. Hence, we can use the S-box proposition to derive the values

of x0[0, 5, 10, 15]. Then, knowing the plaintext and x0[0, 5, 10, 15] allows us to derive

WK[0, 5, 10, 15] ≡ K[0, 5, 10, 15]. Using the one value of the difference ∆y1[1, 3], we

can derive the value of x1[1, 3] using the S-box proposition. Then, we can derive

RK0[1, 3] ≡ K[1, 3]. At this stage we have 290.9 key candidates and we guess 62 values

to derive K[0, 1, 3, 5, 10, 15] but we have 3 filters of K[1, 5, 15] between this step and

the previous step. Therefore, in total we have 290.9 × 62 × 2−24 = 272.1 remaining key

candidates for K[0, 1, 3 · · ·8, 10, 12 · · ·15].

5. By guessing the 62 possible differences of ∆w0[9, 11] and propagating them backward

through the linear operations MixColumn and InvShuffleCell we can determine the

values of ∆y0[3, 6, 9, 12]. Hence, we can use the S-box proposition to derive the values

of x0[3, 6, 9, 12]. Then, knowing the plaintext and x0[3, 6, 9, 12] allows us to derive

WK[3, 6, 9, 12] ≡ K[3, 6, 9, 12]. Using the one value of the difference ∆y1[9, 11], we

can derive the value of x1[9, 11] using the S-box proposition. Then, we can derive

RK0[9, 11] ≡ K[9, 11]. At this stage we have 272.1 key candidates and we guess 62

values to derive K[3, 6, 9, 11, 12] but we have one filter in this step of K[9] and 3

of K[3, 6, 12] between this step and the previous step. Therefore, in total we have

272.1 × 62 × 2−32 = 245.3 remaining key candidates for K[0, 1, 3 · · ·15].

Attack Complexity. The time complexity of the key recovery phase can be derived from

the previous steps as follows: step 1 needs 2 × 2 × 2117.7/(4 × 13) = 2114 encryptions, step

2 needs 2 × 2117.7 × 6/(4 × 13) = 2115.6 encryptions, step 3 needs 2 × 2112.3 × 6/(4 × 13) =

2110.2 encryptions, step 4 needs 2 × 290.9 × 62/(4 × 13) = 291.4 encryptions, step 5 needs

2 × 272.1 × 62/(4 × 13) = 272.6 encryptions. Therefore, the time complexity to find 245.3

key candidates for K[0, 1, 3 · · ·15] is 2114 + 2115.6 + 2110.2 + 291.4 + 272.6 ≈ 2115.6. To retrieve

the master key we make an exhaustive search for the remaining key candidates with K[2]

which needs 28 × 245.3 = 253.3 encryptions. Therefore, the time complexity of the attack is

dominated by the time needed to build the required structures which is 2119 encryptions.

The data complexity of the attack is 2119 chosen plaintext.

6.4.3 Multiple Differential Cryptanalysis of Midori128

In this section, we describe a multiple differential attack that offers some time-data trade-off

compared to the previous attack. Using Algorithm 8 and by enumerating all the 10-round

differentials that hold with probability > 2−124, we found 700 such differentials. In here,

we show how to exploit 16 of them to launch a multiple differential attack on Midori128.

97

These 16 differentials are shown in Table 6.5. As shown in the table, all these differentials

have the same input difference, but have different output differences that are all active in

the same bytes. The first differential in Table 6.5 is the differential that is used in the attack

described in the previous section. Therefore, the previous attack can be applied with multiple

differentials with small modifications.

In this attack, we retrieve the same key bytes as in the previous attack. The total differen-

tial probability of the 16 differential is 2−114.7. Therefore, the total differential probability of

the 13-round differential is 2−112 × 2−114.7 = 2−226.7. Consequently, we need 2226.7−223 = 23.7

structures with 23.7×2112 = 2115.7 chosen plaintext. As shown in Table 6.5, ∆x12[4, 5, 6] have

the following possible differences {4, 8, 16, 32} and ∆x12[12, 13, 15] have the following possi-

ble differences {8, 16, 32, 64}. Therefore, after the S-box layer, we have the following: each

one of ∆y12[4, 6, 15] has 19 possible differences, ∆y12[5] has 15 possible differences, ∆y12[12]

has 17 possible differences, and ∆y12[13] has 20 possible differences. As a result, we have

193 × 15 × 17 × 20 = 225.1 possible differences at the ciphertext. Consequently, we have

2226.7 × 2−80 × 225.1−48 = 2123.8 remaining message pairs after the ciphertext filter. The re-

maining key candidates for each pair are 16 × 215.6 × 2−88 = 2−68.4. Therefore, the number

of remaining key candidates for all the remaining message pairs, after the ciphertext filter,

is given by 2123.8 × 2−68.4 = 255.4 which can be exhaustively searched with the remaining key

byte. We can use the same steps that are used in the previous attack to determine theses

255.4 remaining key candidates. The time complexity of the attack is dominated by step 2.

At the beginning of step 2, we have 2123.8×16 = 2127.8 key candidates for K[4, 5, 6, 12, 13, 15].

Therefore, the time complexity of step 2 is 2× 2127.8 × 6/(4× 13) = 2125.7 encryptions. The

data complexity is 2115.7 chosen plaintext.

6.5 Conclusion

In this chapter, we have presented 7-round impossible differential distinguishers on Midori128,

which, unlike the previously best known one, cover the linear transformation of the last

round. Then, we exploited 4 of these distinguishers to present an 11-round attack involving

the pre-whitening and post-whitening keys. This attack improves the previous best known

impossible differential attack on Midori128 which covers 10 rounds without the pre-whitening

key. The time, data and memory complexities of the attack are 2122.75 encryptions, 2121

chosen plaintexts and 2112 128-bit blocks. We also showed how to exploit the structure of

the S-boxes and the MixColumn operations of Midori128 in order to obtain long differentials

that use single bit difference for the inputs and outputs of the active S-boxes. Then, we

developed an algorithm that can be used to efficiently enumerate all such differentials for a

given number of rounds. Using this algorithm, we obtained a 10-round differential that holds

98

Table 6.5: 10-round differentials of Midori128

Input difference (in hexadecimal) Output difference (in hexadecimal) Probability

00000000 00100000 00001000 00000000 40004040 00000000 00101010 00000000 2−118.09

00000000 00100000 00001000 00000000 08000808 00000000 00080808 00000000 2−118.12

00000000 00100000 00001000 00000000 08000808 00000000 00202020 00000000 2−118.12

00000000 00100000 00001000 00000000 40004040 00000000 00080808 00000000 2−118.18

00000000 00100000 00001000 00000000 40004040 00000000 00202020 00000000 2−118.18

00000000 00100000 00001000 00000000 10001010 00000000 00080808 00000000 2−118.36

00000000 00100000 00001000 00000000 10001010 00000000 00202020 00000000 2−118.36

00000000 00100000 00001000 00000000 10001010 00000000 00101010 00000000 2−118.43

00000000 00100000 00001000 00000000 10001010 00000000 00040404 00000000 2−118.8

00000000 00100000 00001000 00000000 40004040 00000000 00040404 00000000 2−118.8

00000000 00100000 00001000 00000000 20002020 00000000 00101010 00000000 2−118.81

00000000 00100000 00001000 00000000 08000808 00000000 00040404 00000000 2−119.29

00000000 00100000 00001000 00000000 20002020 00000000 00080808 00000000 2−119.81

00000000 00100000 00001000 00000000 20002020 00000000 00202020 00000000 2−119.81

00000000 00100000 00001000 00000000 08000808 00000000 00101010 00000000 2−120.32

00000000 00100000 00001000 00000000 20002020 00000000 00040404 00000000 2−120.43

with probability 2−118. By appending 2 rounds above and one round below this 10-round

differential, we obtained a 13 round truncated differential and used it to launch a key recovery

attack attack on 13-round reduced Midori128. The time and data complexities of the attack

are 2119 encryptions and 2119 chosen plaintext. Moreover, we presented a multiple differential

attack on the 13-round reduced cipher with time and data complexities of 2125.7 encryptions

and 2115.7 chosen plaintext, respectively.

99

Chapter 7

A MitM with Efficient Enumeration

Cryptanalysis of Kuznyechik

Kuznyechik is an SPN block cipher that has been chosen recently to be standardized by the

Russian federation as a new GOST cipher. The cipher employs a 256-bit key which is used to

generate ten 128-bit round keys. The encryption procedure updates the 16-byte state by it-

erating the round function for nine rounds. In this chapter, we improve the previous 5-round

Meet-in-the-Middle (MitM) attack on Kuznyechik by presenting a 6-round attack using the

MitM with differential enumeration technique. Unlike previous distinguishers which utilize

only the structural properties of the Maximum Distance Separable (MDS) linear transforma-

tion layer of the cipher, our 3-round distinguisher is computed based on the exact values of

the coefficients of this MDS transformation. More specifically, first, we identified the MDS

matrix that is utilized in this cipher. Then, we find all the relations that relate between

subset of the inputs and outputs of this linear transformation. Finally, we utilized one of

these relations in order to find the best distinguisher that can optimize the time complexity

of the attack. Also, instead of placing the distinguisher in the middle rounds of the cipher as

in the previous 5-round attack, we place it at the first 3 rounds which allows us to convert the

attack from the chosen ciphertext model to the chosen plaintext model. Then, to extend the

distinguisher by 3 rounds, we performed the matching between the offline and online phases

around the linear transformation instead of matching on a state byte.

7.1 Introduction

Kuznyechik [117] (Grasshopper in Russian) is a substitution permutation network (SPN)

block cipher which has been recently selected to be standardized by the Russian federation

as a new GOST cipher [5]. The current GOST R 34.12-2015 standard defines the new cipher,

Kuznyechik, in addition to the old block cipher GOST 28147-89 [1] which is now named

100

Magma. The cipher employs a 256-bit key which is used to generate ten 128-bit round keys.

The encryption procedure updates the 16-byte state by iterating the round function for nine

rounds. While the encryption process of Kuznyechik follows the SPN design architecture, its

key schedule employs a Feistel network to generate the round keys.

In the single-key attack model, Kuznyechik has been analyzed in [14, 32]. Furthermore,

Biryukov, et al. [33] revealed a hidden structure in the S-box used in the cipher. A fault

analysis attack on the cipher was also presented in [13].

In this chapter, we focus on improving the previous MitM attack on the cipher. More

precisely, we present 6-round MitM attack on Kuznyechik1. This attack utilizes a 3-round

truncated differential distinguisher that is based on the efficient enumeration and multiset

techniques. In particular, in this distinguisher, the match between the offline and online

computations is accomplished using a linear relation that relates 5 input bytes and 12 output

bytes of the linear transformation layer. In the offline phase, we compute the left hand side

of the relation and store the obtained results in a table. Then, in the online phase, we work

out the right hand side of the relation and compare it with the stored results in order to filter

out the wrong keys. This idea, which is inspired by the work in [57], enables us to extend the

3-round distinguisher by 3 rounds to launch our 6-round MitM attack. Our attack has a time

complexity of 2231 encryptions, a memory complexity of 2218 128-bit, and a data complexity

of 2113 chosen plaintexts.

The rest of the chapter is organized as follows. Section 7.2 provides the notations used

throughout the chapter and a brief description of Kuznyechik. In section 7.3, we present our

attack on 6 rounds of Kuznyechik. Finally, the chapter is concluded in section 7.4.

7.2 Specifications of Kuznyechik

The following notation is used throughout the rest of the chapter:

- K: The master key.

- Ki: The 128-bit round key used in the ith round.

- xi, yi, zi: The 16-byte state before the substitution, linear, and key addition operations,

respectively, at round i.

- xi[j]: The jth byte of the state xi, j = 0, 1, · · · , 15.

1In appendix E, we also show how the attack presented in [14] can be tweaked to work under the chosen
plaintext model with less time complexity.

101

- xi[j : l]: The bytes from j to l of xi, j < l.

- ∆xi, ∆xi[j]: The difference at state xi, and byte xi[j], respectively.

- ·,+: The multiplication and addition inGF (28) using the irreducible polynomial p(x) =

x8 + x7 + x6 + x+ 1.

- ||: The concatenation operation.

Kuznyechik [117, 5] employs the SPN design approach. It has a block length of 128-bit

and a secret key of 256 bits. The 128-bit secret key is used to generate 10 128-bit round keys

through the key schedule algorithm. The internal state is updated using the round keys by

applying the round function 9 times, as illustrated in Figure 7.1. The round function has the

following operations [14]:

� � � 	
 � � �� � � ��� �	 �
 ��

�����

�

�

�������

�

�

��������

Figure 7.1: Encryption scheme

- Nonlinear bijective transformation (S): A nonlinear byte bijective mapping.

- Linear Transformation (L): An optimal diffusion operation that operates on a 16-byte

input and has an optimal branch number = 17. This operation can be defined as

L(a) = R16(a), i.e., by iterating the transformation R for 16 times on a ∈ {0, 1}128

where

R(a) = R(a15|| · · · ||a0) = l(a15|| · · · ||a0)||a15|| · · · ||a1, (7.1)

102

l(a15, · · · , a0) = 0x94 · a15 + 0x20 · a14 + 0x85 · a13 + 0x10 · a12

+ 0xC2 · a11 + 0xC0 · a10 + a9 + 0xFB · a8 + a7

+ 0xC0 · a6 + 0xC2 · a5 + 0x10 · a4 + 0x85 · a3

+ 0x20 · a2 + 0x94 · a1 + a0.

(7.2)

- XOR layer (X): Mixes round keys with the encryption state.

Additionally, an XOR layer is added after the last round. Therefore, the encryption algo-

rithm that is used to encrypt the plaintext P to obtain the ciphertext C, can be expressed

as follows:

C = X [K10] ◦ (L ◦ S ◦X [K9]) ◦ · · · ◦ (L ◦ S ◦X [K1])(P).

In our attack, we swap the order of the linear operations L, X , and hence we use an equiv-

alent key EKr instead of Kr such that EKr = L−1(Kr).

Key Schedule. The 256-bit secret key is used to generate 10 sub-round keys of length

128 bits each through a 32-round Feistel network. First the master key K is split into two

keys K1, K2 such that K = K1||K2. These keys are used as the first two round keys. Then,

these two round keys are updated through the Feistel network that applies the same round

function of the encryption on the right branch of the Feistel structure. Finally, as depicted in

Figure 7.2, each pair of subsequent round keys is extracted after eight rounds of execution.

The XOR operation in the round function is done using constants Ci, i = 1, 2, · · · , 32, defined

as Ci = L(i).

We measure the memory complexity of our attacks as 128-bit Kuznyechik blocks and the

time complexity in terms of the equivalent number of reduced-round Kuznyechik encryptions.

7.3 A MitM attack on 6-round Kuznyechik

Here, in order to identify the key candidates, we use the multisets (see Definition 7) of the

outputs corresponding to the δ-set (see Definition 5) as a distinguishing property. Our attack

depends on the S-box proposition (see Proposition 1). The distinguishing property used in

our attack is based on a relation between 5 input bytes and 12 output bytes of the linear

transformation L, which can be captured by the following proposition:

103

�������

����

�������

����

��������

�����

Figure 7.2: Key schedule

Proposition 9 The linear transformation L that transform the input a = a15||a14|| · · · ||a0

to the output b = b15||b14|| · · · ||b0 has the following property:

a11 + 0x94 · a12 + 0x20 · a13 + 0x85 · a14 + 0x10 · a15 =

0xC2 · b0 + 0xC0 · b1 + b2 + 0xFB · b3 + b4 + 0xC0 · b5+

0xC2 · b6 + 0x10 · b7 + 0x85 · b8 + 0x20 · b9 + 0x94 · b10 + b11.

(7.3)

Proposition 9 is obtained by first using equations (7.1) and (7.2) to calculate the equivalent

16× 16 MDS matrix, A, that transforms the input a to the output b. Thus we have2

2All the matrix coefficients ∈ GF (28) and are expressed in hexadecimal notation.

104

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

b15

=

1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94

94 A5 3C 44 D1 8D B4 54 DE 6F 77 5D 96 74 2D 84

84 64 48 DF D3 31 A6 30 E0 5A 44 97 CA 75 99 DD

DD 0D F8 52 91 64 FF 7B AF 3D 94 F3 D9 D0 E9 10

10 89 48 7F 91 EC 39 EF 10 BF 60 E9 30 5E 95 BD

BD A2 48 C6 FE EB 2F 84 C9 AD 7C 1A 68 BE 9F 27

27 7F C8 98 F3 0F 54 8 F6 EE 12 8D 2F B8 D4 5D

5D 4B 8E 60 1 2A 6C 9 49 AB 8D CB 14 87 49 B8

B8 6E 2A D4 B1 37 AF D4 BE F1 2E BB 1A 4E E6 7A

7A 16 F5 52 78 99 EB D5 E7 C4 2D 6 17 62 D5 48

48 C3 2 0E 58 90 E1 A3 6E AF BC C5 0C EC 76 6C

6C 4C DD 65 1 C4 D4 8D A4 2 EB 20 CA 6B F2 72

72 E8 14 7 49 F6 D7 A6 6A D6 11 1C 0C 10 33 76

76 E3 30 9F 6B 30 63 A1 2B 1C 43 68 70 87 C8 A2

A2 D0 44 86 2D B8 64 C1 9C 89 48 90 DA C6 20 6E

6E 4D 8E EA A9 F6 BF 0A F3 F2 8E 93 BF 74 98 CF

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

Then by performing Gauss elimination on the augmented matrix (A||b), we obtain

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

94 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 94 1 0 0 0 0 0 0 0 0 0 0 0 0 0

85 20 94 1 0 0 0 0 0 0 0 0 0 0 0 0

10 85 20 94 1 0 0 0 0 0 0 0 0 0 0 0

C2 10 85 20 94 1 0 0 0 0 0 0 0 0 0 0

C0 C2 10 85 20 94 1 0 0 0 0 0 0 0 0 0

1 C0 C2 10 85 20 94 1 0 0 0 0 0 0 0 0

FB 1 C0 C2 10 85 20 94 1 0 0 0 0 0 0 0

1 FB 1 C0 C2 10 85 20 94 1 0 0 0 0 0 0

C0 1 FB 1 C0 C2 10 85 20 94 1 0 0 0 0 0

C2 C0 1 FB 1 C0 C2 10 85 20 94 1 0 0 0 0

10 C2 C0 1 FB 1 C0 C2 10 85 20 94 1 0 0 0

85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94 1 0 0

20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94 1 0

94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94 1

b0

b1

b2

b3

b4

b5

b6

b7

b8

b9

b10

b11

b12

b13

b14

b15

=

1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20 94

0 1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85 20

0 0 1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10 85

0 0 0 1 94 20 85 10 C2 C0 1 FB 1 C0 C2 10

0 0 0 0 1 94 20 85 10 C2 C0 1 FB 1 C0 C2

0 0 0 0 0 1 94 20 85 10 C2 C0 1 FB 1 C0

0 0 0 0 0 0 1 94 20 85 10 C2 C0 1 FB 1

0 0 0 0 0 0 0 1 94 20 85 10 C2 C0 1 FB

0 0 0 0 0 0 0 0 1 94 20 85 10 C2 C0 1

0 0 0 0 0 0 0 0 0 1 94 20 85 10 C2 C0

0 0 0 0 0 0 0 0 0 0 1 94 20 85 10 C2

0 0 0 0 0 0 0 0 0 0 0 1 94 20 85 10

0 0 0 0 0 0 0 0 0 0 0 0 1 94 20 85

0 0 0 0 0 0 0 0 0 0 0 0 0 1 94 20

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 94

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

a14

a15

(7.4)

105

It should be noted that this Gauss elimination step allows us to obtain many linear relations

that relate subsets of the input and output bytes of the linear transformation, however, the

relation identified by Proposition 9, which corresponds to the bold line in equation (7.4)

above, helped us to reduce the total time complexity of the attack.

As depicted in Figure 7.3, the distinguisher starts at x1 and ends at y4. The δ-set is chosen

at byte 15 and the multiset is computed from the left hand side of equation (7.3) using bytes

11, 12, 13, 14, 15. Our distinguisher is based on the following proposition:

�����

�

�

�����

�

�

�����

�

�

�����

�

�

�����

�

������

�

�

�

��� �

!

"�

#�

$�

"�

#�

$�

"�

#�

$�

"�

#�

$�

"�

#�

$�

"�

#�

$�

%

&'()'*+,'(-./

Figure 7.3: Kuznyechik 6-round attack

Proposition 10 If a message m belongs to a pair of states conforming to the truncated

106

differential characteristic shown in Figure 7.3, then the multiset of differences y4[11]+ 0x94 ·

y4[12]+0x20 ·y4[13]+0x85 ·y4[14]+0x10 ·y4[15] obtained from the δ-set constructed from m in

x1[15] is fully determined by the following 27 bytes: ∆x1[15], x2, y4[11 : 15] and ∆y4[11 : 15].

Proof. The proof is based on the efficient enumeration technique [58]. In the following, we

show how the knowledge of 27 bytes is enough to propagate the δ-set at x1 and compute the

multiset (y4[11] + 0x94 · y4[12] + 0x20 · y4[13] + 0x85 · y4[14] + 0x10 · y4[15]). Let (m,m′) be

a right pair that conforms to the truncated differential characteristic in Figure 7.3. Since we

are interested in the multiset instead of the ordered sequence and the S-box that is used is

bijective, then we can propagate the difference ∆y1[15] instead of ∆x1[15]. ∆y1[15] can be

propagated through the linear operations L, and X to compute ∆x2. With the knowledge of

x2, we can bypass the non-linear operation S. Then we can forward the knowledge through

L,X to get ∆x3. Similarly, in the backward direction, the knowledge of y4[11 : 15] allows the

propagation of ∆y4[11 : 15] through the non-linear mapping S−1 to get ∆x4[11 : 15]. Then,

we propagate the difference ∆x4[11 : 15] backward linearly through X , L−1 to determine

∆y3. Using the differential property of Kuznyechik S-box, the expected number of solutions

for x3 is one.

The previous 3-round distinguisher is utilized to launch a 6-round attack on Kuznyechik

by appending 3 rounds below it. In what follows, we describe the details of our attack which

has two phases, namely the offline and online phases.

Offline Phase. In this phase, we build the distinguishing property that will be used in

the online phase to filter the key space. As mentioned above, our distinguisher can be built

using only 27 parameters given by Proposition 10. First, we iterate on the 227×8 = 2216

possible values for each of the 27 byte parameters, to deduce the internal state variable x3.

Then, using the obtained value of x3, we propagate the δ-set to compute the multiset differ-

ences y4[11] + 0x94 · y4[12] + 0x20 · y4[13] + 0x85 · y4[14] + 0x10 · y4[15] and store them in a

table. Consequently, we have 2216 multisets out of the 2467.6 theoretically possible ones (not

2506.17 because the number of ordered sequences associated to a multiset is not constant [58]).

Online Phase. In this phase, we have two steps. First, the data collection step where

we want to ensure that we have one pair of messages that conform to the truncated differen-

tial characteristic in Figure 7.3, which holds with probability p. This is achieved by collecting

1/p pair of messages. Second, the key recovery where we first identify the key values that

satisfy the truncated differential characteristic in Figure 7.3. Then these key values with the

collected data pairs are used to create the δ-set, compute the multiset in the online phase

and compare it with the precomputation table to determine the valid key candidates.

107

Data Collection. We employed our δ-set in the plaintext side to operate in the chosen

plaintext model. We also utilize plaintext structures to reduce the amount of required plain-

texts. The utilized structure takes all the possible values in byte 15 while the remaining bytes

take fixed value. Therefore, one structure generates 28× (28−1)/2 ≈ 215 possible pairs. The

probability of the whole truncated differential characteristic of Figure 7.3 can be calculated

from the following probabilities: transition from x6 to z5 over L−1 (16 → 12) of probability

2−4×8 = 2−32 and transition from z4 to y4 over L−1 (12 → 5) of probability 2−11×8 = 2−88.

Therefore, the total probability of the truncated differential characteristic is 2−120. Hence, to

find one pair of messages that conform to the truncated differential characteristic, we need

to collect 2120 message pairs. Since each structure contains 215 message pairs, 2105 structures

will suffice to find the right pair. Therefore, the total number of queries to the encryption

oracle is about 2113.

Key Recovery. This step involves two sub steps. First, identifying the key suggestions

that will be used in building and computing the δ-set and the multiset, respectively. Second,

checking whether the identified keys in the first sub step are key candidates. The keys that

are used in building the δ-set and computing the multiset are EK6[0 : 11], K7, i.e., we want to

guess 28 bytes which will make the computational complexity exceeds the exhaustive search.

Instead, we identify the number of key suggestions of the 28 bytes that correspond to each

pair of messages. This can be achieved as follows: to deduce the values of the 16 bytes of K7,

we guess 12 bytes of ∆y5[0 : 11] and propagate these values linearly through X,L to get ∆x6.

The knowledge of the ciphertext allows us to compute ∆y6. Using the differential property of

the S-box, we evaluate y6. Then, we compute z6 from y6 through the linear operation L. The

knowledge of the ciphertext and z6 allows us to deduce the values of the 16 bytes of K7. For

the next 12 bytes of Ek6[0 : 11], the 5 bytes of ∆y4, ∆y4[11 : 15] can take 240 values, but only

28 values among them can follow the truncated differential characteristic and after applying

L, ∆z4 has only 4 zero bytes. Therefore, to deduce the values of the 12 bytes EK6[0 : 11],

we guess the 28 values for ∆y4[11 : 15] and propagate them linearly forward through L, X

to compute ∆x5[0 : 11]. The knowledge of ∆x5[0 : 11] and ∆y5[0 : 11] allows us to deduce

the value of 12 bytes y5[0 : 11] using the differential property of the S-box. We can also

propagate y6 through S−1 and L−1 to get z5[0 : 11]. The knowledge of z5[0 : 11] and y5[0 : 11]

allows to deduce EK6[0 : 11]. To summarize this part, we have 213×8 = 2104 key suggestions

for the 28 key bytes EK6[0 : 11], K7.

Now, we can use the 2120 collected message pairs and the 2104 suggestions for the 28

key bytes EK6[0 : 11], K7 to identify the δ-set and compute the multiset constructed from

0xC2 · z4[0] + 0xC0 · z4[1] + z4[2] + 0xFB · z4[3] + z4[4] + 0xC0 · z4[5] + 0xC2 · z4[6] + 0x10 ·

108

z4[7] + 0x85 · z4[8] + 0x20 · z4[9] + 0x94 · z4[10] + z4[11]. Consequently, the key suggestion is

considered wrong if no match is found in the table. Otherwise, it is considered as a key can-

didate. The probability of a wrong key leading to a match in the table is 2216/2467.6 = 2−251.6.

Therefore, after this step we will have 2120+104−251.6 = 2−27.6 key candidates for the key bytes

EK6[0 : 11], K7. In other words, only the right candidate will pass this filtering step. From

the key schedule of Kuznyechik, the master key can be recovered by guessing K8. Then,

we can propagate the knowledge of K7 and K8 until we evaluate K1 and K2, and hence

the master key K = K1||K2. Therefore, retrieving the master key requires to exhaustively

search the remaining key candidate of K7 with the 2128 possible values of K8 using two plain-

text/ciphertext pairs.

Attack Complexity. The offline phase dominates the memory complexity of the attack

in which we store 2216 multiset where each multiset is 512 bits. Therefore, the memory com-

plexity of the attack is 2216 × 512/128 = 2218 128-bit blocks. The data collection step which

determines the data complexity of the attack requires us to collect 2113 plaintext to generate

2120 message pairs. Hence the data complexity of the attack is 2113 chosen plaintexts. The

time complexity of the attack has three main components. First, the time needed to store

the precomputation table, is 227×8 × 28 × 3/6 = 2223 encryptions. Second, the time required

to get the one key candidate for K7 is 2120 × 213×8 × 28 × 3/6 = 2231 encryptions. Third, the

time required to retrieve the master key is 2× 2128 = 2129. Therefore, the time complexity of

the attack is about 2231 encryptions.

7.4 Conclusion

In this chapter, we presented a Meet-in-the-Middle attack on 6-round reduced Kuznyechik.

By exploiting the exact values of the coefficients of the MDS transformation of the cipher,

our attack recovers the master key with data complexity of 2113 chosen plaintexts, time

complexity of 2231 encryptions, and memory complexity of 2218 128-bit blocks. This attack

improves the previous results of the MitM with differential enumeration technique which

can only reach 5 rounds. Compared to the best known attack which does not require the

full code book on this cipher in the single-key model, and which also reaches 6 rounds, our

attack improves the data complexity at the expense of requiring more time and memory

complexities.

109

Chapter 8

Multidimensional Zero-Correlation

Attacks on SPARX-128

SPARX is a family of ARX-based block ciphers proposed at ASIACRYPT 2016. This family

was designed with the aim of providing provable security against single-characteristic linear

and differential cryptanalysis. SPARX-128/128 and SPARX-128/256 are two members of

this family which operate on data blocks of length 128 bits and keys of length 128 and 256

bits, respectively. In this work, we propose a zero-correlation distinguisher that covers 5

steps (20 rounds) for both variants of SPARX-128. Then, using specific linear masks at its

output and utilizing some properties of the employed linear layer and S-box, we extend this

distinguisher to 5.25 steps (21 rounds). By exploiting some properties of the key schedule, we

extend the 20-round distinguisher by 4 rounds to present a 24-round multidimensional zero-

correlation attack against SPARX-128/256, i.e., 6 steps out of 10 steps. The 24-round attack

is then extended to a 25-round (6.25 out of 10 steps) zero-correlation attack against SPARX-

128/256 with the full codebook by using the developed 21-round distinguisher. In addition,

we extend the 21-round distinguisher by one round to launch a 22-round multidimensional

zero-correlation attack against SPARX-128/128, i.e., 5.5 steps out of 8 steps.

8.1 Introduction

With the aim of developing block ciphers with provable security against single-characteristic

linear and differential cryptanalysis, Dinu et al. [61] proposed a new ARX-based family of

block ciphers at ASIACRYPT 2016. They achieved this goal by proposing a new strategy,

namely, the long trail strategy, which is different from the well-studied wide trail strategy [53]

that is used by many S-box based block ciphers. The long trail strategy encourages the use

of a rather weak but large S-boxes such as ARX-based S-boxes along with a very light linear

transformation layer. Adopting this strategy in the SPARX family allowed the designers

110

to prove the security of the cipher against single-characteristic linear and differential crypt-

analysis by bounding the maximum linear and differential probabilities for any number of

rounds.

SPARX-128/128 and SPARX-128/256 are two members of the SPARX family which em-

ploy a data block of length 128 bits using 128 and 256 key bits, respectively. The only

known attacks against these two variants were developed by the designers. These attacks

were found using integral cryptanalysis based on Todo's division property [125] and cover 22

and 24 rounds of SPARX-128/128 and SPARX-128/256, respectively, in the chosen plaintext

attack model.

Zero-correlation [39] is one of the relatively new techniques that is used to analyze symmetric-

key primitives, where the attacker utilizes a linear approximation of probability exactly 1/2

over rm rounds to act as a distinguisher. Then, this distinguisher can be utilized in a key

recovery attack such that the keys which lead to this distinguisher are excluded. This tech-

nique proves its success against many of the recently proposed block ciphers as exemplified

by the work done in [138, 120, 39, 141, 135].

In this chapter, we evaluate the security of SPARX-128 in the known plaintext attack

model using the zero-correlation cryptanalysis. First, we present a 20-round zero-correlation

distinguisher. Then, we use a specific linear mask at the output of this 20-round distinguisher

and exploit some properties of the employed linear layer and S-box to add one more round

and create a 21-round zero-correlation distinguisher. To turn these distinguishers into key

recovery attacks, we take advantage of the property of the S-box that permits the existence

of a two-round linear approximation that holds with probability 1. Then, by exploiting

the key schedule relations, we place this deterministic two-round linear approximation in

a position that enables us to extend the 20-round distinguisher by 4 complete rounds, i.e.,

including the linear layer, to launch a 24-round key recovery attack against SPARX-128/256

using multidimensional zero-correlation attack. This 24-round attack is, then, extended

by one more round using the 21-round distinguisher to launch a 25-round zero-correlation

attack against SPARX-128/256 using the full codebook. In addition, we extend the 21-round

distinguisher to launch a 22-round attack against SPARX-128/128.

The remainder of the chapter is organized as follows. In section 8.2, the notations used

throughout the chapter and the specifications of SPARX-128/128 and SPARX-128/256 are

presented. In section 8.3, we present our distinguisher for SPARX-128/128 and SPARX-

128/256. Afterwards, in section 8.4, we provide a detailed description of our multidimen-

sional zero-correlation attacks against SPARX-128/128 and SPARX-128/256, and finally we

111

conclude the chapter in section 8.5.

8.2 Specifications of SPARX-128

The following notations are used throughout the chapter:

- K: The master key.

- ki: The i
th 16-bit of the key state, where 0 ≤ i ≤ 7 for SPARX-128/128, and 0 ≤ i ≤ 15

for SPARX-128/256.

- Ki: The i
th 32-bit of the key state, where 0 ≤ i ≤ 3 for SPARX-128/128, and 0 ≤ i ≤ 7

for SPARX-128/256.

- kj
i : The i

th 16-bit of the key state after applying the key schedule permutation j times,

where 0 ≤ i ≤ 7, 0 ≤ j ≤ 32 for SPARX-128/128, and 0 ≤ i ≤ 15, 0 ≤ j ≤ 20 for

SPARX-128/256.

- Kj
i : The i

th 32-bit of the key state after applying the key schedule permutation j times,

where 0 ≤ i ≤ 3, 0 ≤ j ≤ 32 for SPARX-128/128, and 0 ≤ i ≤ 7, 0 ≤ j ≤ 20 for

SPARX-128/256.

- RK(a,i): The 32-bit round key used at branch a of round i where 0 ≤ i ≤ 32 (resp.

0 ≤ i ≤ 40) for SPARX-128/128 (resp. SPARX-128/256), and 0 ≤ a ≤ 3, with a = 0

corresponding to the left branch.

- X(a,i) (Y(a,i)): The left (right) 16-bit input at branch a of round i where 0 ≤ i ≤ 32

(resp. 0 ≤ i ≤ 40) for SPARX-128/128 (resp. SPARX-128/256), 0 ≤ a ≤ 3, with a = 0

corresponding to the left branch, and the LSBs of both X(a,i) and Y(a,i) start from the

right.

- X(a,i)[i, j, · · · , k]: The i, j, · · · , k bits of X(a,i).

- X(a,i)[i : j]: The bits from i to j of X(a,i), where i ≤ j.

- w: The number of 32-bit words, i.e., w = 4 for a 128-bit block and w = 8 for a 256-bit

master key.

- R4: The iteration of 4 rounds of SPECKEY [21, 22] with their corresponding key

additions.

- Lw: Linear mixing layer used in SPARX with w-word block size. Thus, L4 represents

the linear mixing layer used in SPARX-128/128 and SPARX-128/256.

112

�01234�01234 �0567234�0567234

�

�

�

�

�0123894�0123894 �056723894�056723894

��01234

��012389674

��0567234

��05672389674

�
�
�

������

�
�
�

�5

�������

���	
�������

�����

�������

�����

�����

Figure 8.1: SPARX structure

- ⊞: Addition mod 216.

- ⊕: Bitwise XOR.

- ≪ q (≫ q): Rotation of a word by q bits to the left (right).

- ‖: Concatenation of bits.

SPARX [61, 60] is a family of ARX-based Substitution-Permutation Network (SPN) block

ciphers. It follows the SPN design construction while using ARX-based S-boxes instead of

S-boxes based on look-up tables. The ARX-based S-boxes form a specific category of S-boxes

that rely solely on addition, rotation and XOR operations to provide both non-linearity and

diffusion. The SPARX family adopts the 32-bit SPECKEY ARX-based S-box (S), shown in

Figure 8.1, which resembles one round of SPECK-32 [21, 22] with only one difference, that

is, the key is added to the whole 32-bit state instead of just half the state as in SPECK-32.

For a given member of the SPARX family whose block size is n bits, the plaintext is divided

into w = n/32 words of 32 bits each. Then, the SPECKEY S-box (S), is applied to w words

in parallel, and iterated r times interleaved by the addition of independent subkeys. Then,

a linear mixing layer (Lw) is applied to ensure diffusion between the words. As depicted in

Figure 8.1, the structure made of a key addition followed by S is called a round while the

structure made of r rounds followed by Lw is called a step. Thus, the ciphertext corresponding

to a given plaintext is generated by iterating such steps. The number of steps and the number

of rounds in each step depend on both the block size and the key length of the cipher.

113

SPARX-128/128 and SPARX-128/256 are two members of the SPARX family which oper-

ate on 128-bit blocks using 128-bit and 256-bit keys, respectively. Both variants use 4 rounds

in each step and iterate over 8 and 10 steps, i.e., the total number of rounds is 32 and 40,

respectively. More precisely, in SPARX-128/128 and SPARX-128/256, 4 SPECKEY S-boxes

(S) are iterated simultaneously for 4 times, while being interleaved by the addition of the

round keys and then a linear mixing layer (L4) is applied, as shown in Figure 8.2 which also

depicts the structure of L4.

:

:

:

;<

:

:

:

: :

:

:

:

:

:

:

: :

=>?@ABC>?@AB =>D@ABC>D@AB =>E@ABC>E@AB =>F@ABC>F@AB

GH>?@AB GH>D@AB GH>E@AB GH>F@AB

GH>?@AIDB GH>D@AIDB GH>E@AIDB GH>F@AIDB

GH>?@AIEB GH>D@AIEB GH>E@AIEB GH>F@AIEB

GH>?@AIFB GH>D@AIFB GH>E@AIFB GH>F@AIFB

=>?@AIJBC>?@AIJB =>D@AIJBC>D@AIJB =>E@AIJBC>E@AIJB =>F@AIJBC>F@AIJB

K L M N

K
L
M
N

OOO P

K L M N

�Q

Figure 8.2: SPARX-128/128 and SPARX-128/256 step structure

SPARX-128/128 key schedule. The 128-bit master key instantiates the key state, de-

noted by k0
0‖k

0
1‖k

0
2‖k

0
3‖k

0
4‖k

0
5‖k

0
6‖k

0
7. Then, the 4× 32-bit round keys used in branch number

0 of the first step are extracted. Afterwards, the permutation illustrated in Figure 8.3 is

applied and then the 4 × 32-bit round keys used in branch number 1 of the first step are

extracted. The application of the permutation and the extraction of the keys are interleaved

until all the round keys encompassing the post-whitening ones are generated. This means

that the round keys of a given branch in step j are generated first and then the key state is

updated.

SPARX-128/256 key schedule. The 256-bit master key instantiates the key state, de-

noted by k0
0‖k

0
1‖k

0
2‖k

0
3‖k

0
4‖k

0
5‖k

0
6‖k

0
7‖k

0
8‖k

0
9 ‖k0

10‖k
0
11‖k

0
12‖k

0
13‖k

0
14‖k

0
15. First, the 4 × 32-bit

114

�R
S

�T
S

�U
S

�V
S

�W
S

�X
S

�Y
S

�Z
S

�

���

�R
S[T

�T
S[T

�U
S[T

�V
S[T

�W
S[T

�X
S[T

�Y
S[T

�Z
S[T

��\]^_` ��\]^_[T` ��\]^_[U`

�

��\]^_[V`

�R
S

�T
S

�U
S

�V
S

Figure 8.3: SPARX-128/128 key schedule permutation, where the counter r is initialized to
0

round keys used in branch number 0 of the first step are extracted. Then, the 4 × 32-bit

round keys used in branch number 1 of the first step are extracted. Afterwards, the per-

mutation illustrated in Figure 8.4 is applied and then the 4 × 32-bit round keys used in

branch number 2 and 3 of the first step are extracted. The application of the permutation

and the extraction of the keys are interleaved until all the round keys encompassing the

post-whitening ones are generated.

�a
b

�c
b

�d
b

�e
b

�f
b

�g
b

�h
b

�i
b

�

���

�a
bjc

�c
bjc

�d
bjc

�e
bjc

�f
bjc

�g
bjc

�h
bjc

�i
bjc

��klmno ��klmnjco ��klmnjdo

�p
b

�q
b

�ca
b

�cc
b

�cd
b

�ce
b

�cf
b

�cg
b

�

�p
bjc

�q
bjc

�ca
bjc

�cc
bjc

�cd
bjc

�ce
bjc

�cf
bjc

�cg
bjc

��kljcmno ��kljcmnjco ��kljcmnjdo��klmnjeo ��kljcmnjeo

�a
b

�c
b

�d
b

�e
b

�f
b

�g
b

�h
b

�i
b

Figure 8.4: SPARX-128/256 key schedule permutation, where the counter r is initialized to
0

8.3 Zero-Correlation Distinguisher of SPARX-128/128

and SPARX-128/256

In this section, we present a 20-round zero-correlation distinguisher for SPARX-128/128 and

SPARX-128/256, which will be exploited later in our attacks against 22 rounds (5.5 steps out

115

of 8) of SPARX-128/128 and 24, 25 rounds (6, 6.25 steps out of 10) of SPARX-128/256. As

depicted in Figure 8.5, this distinguisher begins with only branch 0 containing a linear mask

α0 at round i. Then, by propagating this linear mask 2 steps forward, and by utilizing Lemma

1 and Lemma 2, we have linear masks 0 and α4 applied on X(1,i+8)Y(1,i+8) and X(3,i+8)Y(3,i+8),

respectively. From the other side, at round i + 20, branch 0 has a linear mask β0, branch 1

has no linear mask, and branch 2 and 3 have linear masks β1 and β2, respectively. The linear

masks β1 and β2 are chosen such that L4(β1, β2) = (β0, 0). This choice enables us to pass

one step backward with only one word having a linear mask β3 at branch 2. Then, following

Lemma 1 and Lemma 2, we can propagate the linear masks backward for one additional step

and a linear layer to end with branch 1 and 3 having a non-zero linear mask β6 and a zero

linear mask before applying the inverse of R4 to obtain X(1,i+8)Y(1,i+8) and X(3,i+8)Y(3,i+8),

respectively. Here, R4 can be considered as a one big S-box, and hence, from Lemma 3, this

linear approximation has a zero-correlation.

8.4 Multidimensional Zero-Correlation Cryptanalysis of

SPARX-128

The following observations, which stem from the structure of SPARX-128/128 and SPARX-

128/256, are exploited in our attacks.

Observation 1 As depicted in Figure 8.6a, there is a 2-round linear approximation that

holds with probability 1 (0x0080 0x4001 → 0x0004 0x0004).

Observation 2 As illustrated in Figure 8.6b, the linear mask 0ββ0, where 0 and β denote

0x0000 and 16-bit non-zero linear mask, respectively, propagates through the linear layer L4

as ββ00, i.e., L4(0ββ0) = ββ00.

Observation 3 From Observation 2 and the specification of the S-box, the 20-round distin-

guisher can be extended to 21-round distinguisher, as shown in Figure 8.6c.

8.4.1 Multidimensional Zero-Correlation Attack on SPARX-128/256

In this attack, and in order to maximize the number of attacked rounds, we have chosen

to place the 20-round distinguisher at the bottom, and add 4 analysis rounds at the top to

launch a 24-round attack against SPARX-128/256. Taking into account the key schedule

relations, the top 4 analysis rounds involve all the master key bits, and in order to be able to

extend 4 rounds above the distinguisher, we utilize Observation 1. In particular, we choose

116

�r

�
s

�
s

�
s

�
s

�
s

�
s

�
s

�
s

�tuvwx�tuvwx �tyvwx�tyvwx �tzvwx�tzvwx �t{vwx�t{vwx

�tuvw|sx�tuvw|sx �tyvw|sx�tyvw|sx �tzvw|sx�tzvw|sx �t{vw|sx�t{vw|sx

�r

�tuvw|}x�tuvw|}x �tyvw|}x�tyvw|}x �tzvw|}x�tzvw|}x �t{vw|}x�t{vw|}x

�
s

�
s

�
s

�
s

�r

�
s

�
s

�
s

�
s

�tuvw|yzx�tuvw|yzx �tyvw|yzx�tyvw|yzx �tzvw|yzx�tzvw|yzx �t{vw|yzx�t{vw|yzx

�r

�
s

�
s

�
s

�
s

�tuvw|y~x�tuvw|y~x �tyvw|y~x�tyvw|y~x �tzvw|y~x�tzvw|y~x �t{vw|y~x�t{vw|y~x

�r

�tuvw|zux�tuvw|zux �tyvw|zux�tyvw|zux �tzvw|zux�tzvw|zux �t{vw|zux�t{vw|zux

��� �

�

�

�

�

����
�

�

�

�

� �� ���

� �� ���

���

���

�

�

���

���

��� ���

β0

β0
β0

0

�

0
β1

β2

β1 β2

0 0

00 0β3

0
0

0

0

0

0β3 0

0 00β4

β4
β4

0

0
β5

β6

β6 β5
�����	
	�����

Figure 8.5: A 20-round zero-correlation distinguisher of SPARX-128/128 and SPARX-
128/256, where αi, βj are 32-bit non-zero linear masks and 0 denotes 0x0000 0x0000 linear
mask

117

�����

�����

�����

�����

�������� ������

��������

��������

��������

������

������

������

������

������
��������

��������

��������

��������

������

������

������

������

������������

������

(a) A 2-round linear approximation
which holds with probability 1 for
SPARX family

�����

β 0 0β

β β 0 0

β

β

β

β

0

0

0

0

0

0

� � � �

(b) The propagation of the linear mask
0ββ0 through the linear layer L4

��

0x0080 0x0080 0x0000 0x0080 0x0080 0x0000

0x0080 0x0080

� � � �

0x0205 0x0204 0x0200 0x0200 0x0005 0x0004

������ ������ ������ ������

���

������	
�

���	�������

������	
�

���	�������0x0000 0x0000

0x0000 0x0000

0x0000 0x0000

0x0000 0x0000 0x0000 0x0000

0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

(c) A 21-round zero-correlation distinguisher, where α0 is 32-bit non-zero linear mask

Figure 8.6: Illustrations of Observations 1,2 and 3

118

a specific linear mask at branch 0 at the beginning of our 20-round zero-correlation distin-

guisher. This specific linear mask, after propagating it backward through the linear layer L4,

enables us to bypass 2 rounds of branch 0 with probability 1 by exploiting Observation 1 and

thus have an extended distinguisher (the dotted one in Figure 8.7).

�

�

�

��

�

�

�

� �

�

�

�

�

�

�

� �

������������ ������������ ������������ ������������

�� �� �������� ��������

�� �� �� ��

�� �� �� ��

�� �� ����� �����

������	
��������������	������	������

ββ 00 0β β0

00 00 00��������������

�������������� 00

00

�������������� ��������������

��������������

�	
�
�

������������ ������������ ������������

�������������� �������������� �������������� ��������������

Figure 8.7: A 24-round multidimensional zero-correlation linear cryptanalysis of SPARX-
128/256, where 0 and β denotes 0x0000 and 16-bit non-zero linear mask, respectively

Key Recovery. Here, we chose β = 0x0abc, where a, b, c are 4-bit non-zero linear masks.

Then, the attack proceeds by gathering enough plaintext/ciphertext pairs. Afterwards, we

guess the round keys involved in the analysis rounds to estimate the statistic T . However, the

complexity of the attack following this strategy exceeds the complexity of exhaustive search.

Therefore, we use the partial compression technique in order to reduce the time complexity

of the attack as follows:

Step 1. Allocate an array of counters N1[X1] and initialize it to zeros, where X1 =

X(0,0)Y(0,0)||X(1,0)Y(1,0) ||X(2,0)Y(2,0)||(X(0,24)[0 : 11]⊕ Y(0,24)[0 : 11]⊕ Y(2,24)[0 : 11]⊕X(3,24)[0 :

11]), i.e., |X1| = 108 bits. Then, from the gathered plaintext/ciphertext pairs compute X1

and increment the corresponding counter. Since all the non-zero 16-bit linear masks in the

ciphertext equal β = 0x0abc, then, we can store only (X(0,24)[0 : 11]⊕Y(0,24)[0 : 11]⊕Y(2,24)[0 :

119

11]⊕X(3,24)[0 : 11]) instead of storing each one separately to apply the linear mask β.

Step 2. Allocate an array of counters N2[X2] and initialize it to zeros, where X2 =

X(0,0)Y(0,0)||X(1,3)[0, 1, 7 : 15]Y(1,3)[0 : 10] ||X(2,0)Y(2,0)||(X(0,24)[0 : 11]⊕Y(0,24)[0 : 11]⊕Y(2,24)[0 :

11]⊕X(3,24)[0 : 11]), i.e., |X2| = 98 bits. Then, guess K4, K5, K6 and partially encrypt X1 to

compute X2 and add the corresponding counter N1[X1] to N2[X2].

Step 3. Allocate an array of counters N3[X3] and initialize it to zeros, where X3 =

X(0,0)Y(0,0)||X
′
(1,3)[2, 10]Y

′
(1,3)[2] ||X(2,0)Y(2,0)||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 : 11] ⊕ Y(2,24)[0 : 11] ⊕

X(3,24)[0 : 11]), i.e., |X3| = 79 bits. Then, guess 22 bits of K7 (K7[0 : 10, 16, 17, 23 : 31] ≡

k14[0, 1, 7 : 15], k15[0 : 10]) and partially encrypt X2 to compute X3 and add the corre-

sponding counter N2[X2] to N3[X3]. Since the linear mask on X ′
(1,3)Y

′
(1,3) is 0x0404 0x0004,

i.e., we need to compute only 3 bits of X ′
(1,3)Y

′
(1,3), and we need only to know 22 bits of

X(1,3)[0, 1, 7 : 15]Y(1,3)[0 : 10] and 22 bits of K7 to compute this linear mask.

Step 4. Allocate an array of counters N4[X4] and initialize it to zeros, where X4 =

X(0,0)Y(0,0)||X
′
(1,3)[2, 10]Y

′
(1,3)[2] ||X(2,3)[0, 1, 7 : 15]Y(2,3)[0 : 10]||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 :

11] ⊕ Y(2,24)[0 : 11] ⊕ X(3,24)[0 : 11]), i.e., |X4| = 69 bits. Then, guess the remaining 10 bits

of K7 and partially encrypt X3 to compute X4 and add the corresponding counter N3[X3] to

N4[X4].

Step 5. Allocate an array of counters N5[X5] and initialize it to zeros, where X5 =

X(0,0)Y(0,0)||X
′
(1,3)[2, 10]Y

′
(1,3)[2] ||X

′
(2,3)[10]||(X(0,24)[0 : 11] ⊕ Y(0,24)[0 : 11] ⊕ Y(2,24)[0 : 11] ⊕

X(3,24)[0 : 11]), i.e., |X5| = 48 bits. Then, guess 22 bits ofR(K0) (R(K0)[0 : 10, 16, 17, 23 : 31])

and partially encrypt X4 to compute X5 and add the corresponding counter N4[X4] toN5[X5].

Step 6. Allocate an array of counters N6[X6] and initialize it to zeros, where X6 = X(0,1)[0 :

5, 7 : 15]Y(0,1)[0 : 14]||X ′
(1,3)[2, 10]Y

′
(1,3)[2] ||X

′
(2,3)[10]||(X(0,24)[0 : 11]⊕ Y(0,24)[0 : 11]⊕ Y(2,24)[0 :

11] ⊕ X(3,24)[0 : 11]), i.e., |X6| = 46 bits. Then, guess the remaining 10 bits of R(K0) and

partially encrypt X5 to compute X6 and add the corresponding counter N5[X5] to N6[X6].

Step 7. Allocate an array of counters N7[X7] and initialize it to zeros, where X7 =

X(0,2)[7]Y(0,2)[0, 14]||X
′
(1,3)[2, 10]Y

′
(1,3)[2] ||X

′
(2,3)[10]||(X(0,24)[0 : 11]⊕ Y(0,24) [0 : 11]⊕ Y(2,24)[0 :

11]⊕X(3,24)[0 : 11]), i.e., |X7| = 19 bits. Then, guess 30 bits of K1 (k2[0 : 5, 7 : 15], k3[0 : 14])

and partially encrypt X6 to compute X7 and add the corresponding counter N6[X6] toN7[X7].

The steps of the key recovery phase are summarized in Table 8.1, where the second column

gives the keys to be guessed in each step. The third column presents the saved state in each

step after the partial encryption, the fourth column is the counter size for each obtained state

in the corresponding step, and the fifth column quantifies the time complexity of each step

measured in 24-round encryption by considering the number of S-box accesses.

After Step 7, we have guessed 190 key bits (gK) from the master key and evaluated X7,

that contains all the 19 bits involved in computing the zero-correlation masks. Therefore, to

120

Table 8.1: Key recovery process of the attack on 24-round SPARX-128/256

Step Guessed keys Obtained state Size Time complexity

1 † X1 108 ‡

2 K4, K5, K6 X2 98 2108 × 23×32 ×
3

24× 4
≈ 2199

3 K7[0 : 10, 16, 17, 23 : 31] X3 79 298 × 296+22 ×
1

24× 4
≈ 2209.4

4 K7[11 : 15, 18 : 22] X4 69 279 × 2118+10 ×
3

24× 4
≈ 2202

5 R(K0)[0 : 10, 16, 17, 23 : 31] X5 48 269 × 2128+22 ×
1

24× 4
≈ 2212.4

6 R(K0)[11 : 15, 18 : 22] X6 46 248 × 2150+10 ×
1

24× 4
≈ 2201.4

7 K1[0 : 14, 16 : 21, 23 : 31] X7 19 246 × 2160+30 ×
1

24× 4
≈ 2229.4

†: No additional key guesses needed, ‡: Negligible complexity

recover the master key, the following steps are performed:

1. Allocate an array of counters V [z], where |z| = 12 bits.

2. For 219 values of X7

(a) Evaluate all 12 basis zero-correlation masks on X7 and calculate z.

(b) Update the counter V [z] by V [z] = V [z] +N7[X7].

3. For each guessed key gK, compute TgK =
N × 212

1− 2−12

212−1∑

z=0

(

V [z]

N
−

1

212

)2

.

4. If Tk < τ , then the guessed values of gK are key candidates.

5. Exhaustively search all the remaining key candidates with 266 values for the 66 bits

of the key that are not retrieved by the above steps of the attack using 2 plain-

text/ciphertext pairs.

Attack complexity. Since the beginning of the distinguisher has a specific linear mask and

the end of the distinguisher has a variable 12-bit linear mask β, then m = 12, and hence

l = 212 − 1. Here, we set γ = 2−2.7 and ζ = 2−30 and hence we have z1−γ ≈ 1 and z1−ζ ≈ 6.

According to equation (2.2), the data complexity is about 2125.5 known plaintexts. The total

time complexity of the attack encompasses the time complexity of two phases. The first is

121

the time required to reduce the key search space which can be computed from Table 8.1.

The second is the time required to retrieve the whole master key by exhaustively searching

the remaining 2190 × 2−30 = 2160 key candidates with the 266 key bits not involved in the

attack using 2 plaintext/ciphertext pairs. Therefore, the total time complexity of the attack

is 2229.4 + 2× 2160 × 266 ≈ 2229.65 24-round encryptions.

25-round Zero-Correlation Attack on SPARX-128/256. The above attack can be ex-

tended one more round to launch a key recovery attack against 25-round of SPARX-128/256

with the full codebook. This extra round can be obtained by selecting the linear masks at

the end of the distinguisher as in Observation 3 to convert the 20-round distinguisher to

21-round distinguisher. However, at this time we will use only one zero-correlation linear

approximation. Therefore, we require the full codebook. The time complexity of the attack

is dominated by Step 7, and it will be 2227.4 instead of 2229.4 because we store only 10 bits

instead of 12 bits at the end of the distinguisher.

8.4.2 Multidimensional Zero-Correlation Attack on SPARX-128/128

As depicted in Figure 8.8, in this attack we use the 21-round zero-correlation distinguisher

obtained by utilizing Observation 3. Then, we append an additional round at the bottom of

the distinguisher. In the previous attack, the analysis rounds were placed above the distin-

guisher, therefore, the relation of the round keys to the master key was straightforward and

we use the master key relations in the attack from the beginning. However, in this attack,

we place the analysis round at the bottom of the distinguisher, and hence the relation of the

round keys to the master key is not trivial. Therefore, we will perform the attack on the

round keys. Then, we will explain how to recover the master key from the recovered round

keys. In order to balance the time complexity and the data complexity, we choose α0 having

linear masks in the first 30-bit only.

Key Recovery. Similar to the previous attack, we first gather N plaintext/ciphe-rtext

pairs, and then proceed as follows:

Step 1. Allocate an array of counters N1[X1] and initialize it to zeros, where X1 = X(0,0)[0 :

13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,22)[0 : 4, 11] Y(2,22)[2 : 4, 11]||X(3,22)[0 :

13]Y(3,22)[2 : 13], i.e., |X1| = 92 bits. Then, from the N plaintext/ciphertext pairs com-

pute X1 and increment the corresponding counter.

Step 2. Allocate an array of counters N2[X2] and initialize it to zeros, where X2 = X(0,0)[0 :

13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,21)[9]Y(2,21)[9]

||X(3,22)[0 : 13]Y(3,22)[2 : 13], i.e., |X2| = 84 bits. Then, guess RK(2,22)[2 : 4, 11, 16 : 20, 27] and

partially decrypt X1 to compute X2 and add the corresponding counter N1[X1] to N2[X2].

122

��������		
��������������	�������������

��	 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0x0205 0x0204 0x0200 0x0200 0x0005 0x00040x0000 0x0000

� � � �

�������� �������� �������� ��������

������������ ������������ ������������ ������������

�������������� �������������� �������������� ��������������

Figure 8.8: A 22-round multidimensional zero-correlation linear cryptanalysis of SPARX-
128/128

Step 3. Allocate an array of counters N3[X3] and initialize it to zeros, where X3 = X(0,0)[0 :

13]Y(0,0)[0 : 15]||X(0,22)[0 : 13]Y(0,22)[2 : 13] ||X(2,21)[9]Y(2,21)[9]

||X(3,21)[0, 2]Y(3,21)[2], i.e., |X3| = 61 bits. Then, guess RK(3,22)[2 : 13, 16 : 29] and partially

decrypt X2 to compute X3 and add the corresponding counter N2[X2] to N3[X3].

Step 4. Allocate an array of counters N4[X4] and initialize it to zeros, where X4 = X(0,0)[0 :

13]Y(0,0)[0 : 15]||X(0,21)[0, 2, 9]Y(0,21)[2, 9] ||X(2,21)[9]Y(2,21)[9]

||X(3,21)[0, 2]Y(3,21)[2], i.e., |X4| = 40 bits. Then, guess RK(0,22)[2 : 13, 16 : 29] and partially

decrypt X3 to compute X4 and add the corresponding counter N3[X3] to N4[X4].

To determine the surviving round key candidates, we proceed as in the previous attack

in section 8.4.1 with m = 30, and hence |z| = 30 bits. Moreover, instead of using X7, we

use X4. The number of surviving round key candidates is 262 × 2−ζ. To retrieve the master

key, we will, first, retrieve the 128-bit key after applying the key permutation 20 times, i.e.,

K20
0 ||K20

1 ||K20
2 ||K20

3 and, afterwards, we just revert the key schedule permutation 20 times to

retrieve the master key. We have retrieved RK(0,22)[2 : 13, 16 : 29] which allows us to deduce

K20
2 [2 : 13, 16 : 29], see Figure F.1. Retrieving the remaining 102 bits of K20

0 ||K20
1 ||K20

2 ||K20
3

can be done as follows:

1. We guess K20
0 , K20

3 and the remaining 6 bits of K20
2 to compute RK(1,21), RK(1,23),

RK(2,21), RK(2,22). Hence in total we have 262−ζ+32+32+6−10=122−ζ remaining key candi-

dates for K20
0 , K20

2 , K20
3 , RK(3,22)[2 : 13, 16 : 29], RK(1,21), RK(1,23), RK(2,21), because we

have 10-bit filter on RK(2,22)[2 : 4, 11, 16 : 20, 27].

2. We guess the remaining 6 bits of RK(3,22) to compute RK(2,20), RK(1,22), K
20
1 . Therefore,

123

in total we have 2122−ζ+6 key candidates for K20
0 , K20

1 , K20
2 , K20

3 .

3. We apply the inverse of the key permutation 20 times to retrieve 2122−ζ+6 key candidates

for K, i.e., the master key.

4. We test the remaining key candidates using one plaintext/ciphertext pairs to identify

the correct key.

Attack complexity. Here, we set m = 30 (and hence l = 230 − 1), γ = 2−2.7, and

ζ = 2−26. Thus z1−γ ≈ 1 and z1−ζ ≈ 5.54. The data complexity is 2116.2 known plain-

texts, which can be computed from equation (2.2). In this case, the total time complex-

ity of the attack is determined by the time complexity of three stages. The first is the

time required to reduce the key search space which is dominated by Step 4 and equals

261 × 210+26+26 × 1
22×4

≈ 2116.54. The second is the time required to retrieve the whole master

key and equals 262−26+32+32+6 × 3
22×4

+ 2122−26+6 × 2
22×4

+ 2122−26+6 × 20×2
22×4

+ 2102 ≈ 2103. The

third is the time required by the data collection phase which is equal to 2116.2. Therefore,

the time complexity of the attack is 2116.54 + 2103 + 2116.2 ≈ 2117.38 22-round encryptions.

Remark: It is worth noting that the above zero-correlation attacks are also applicable

to 15 rounds of SPARX-64/128 using the zero-correlation distinguisher shown in Figure G.1

(see also [9]).

8.5 Conclusion

In this chapter, we presented 20 and 21-round zero-correlation distinguishers that are used to

launch key recovery attacks against 24, 25 rounds (6, 6.25 out of 10 steps) of SPARX-128/256

and 22 rounds (5.5 out of 8 steps) of SPARX-128/128. To the best of our knowledge these

are the first third party attacks against SPARX-128/128 and SPARX-128/256.

124

Chapter 9

Summary and Future Research

Directions

9.1 Summary of contributions

In this thesis, we have evaluated the security of several block ciphers (including Khudra,

Piccolo, Kiasu-BC, SKINNY, Midori128, Kuznyechik, and SPARX-128) which employ new

design strategies to enhance either the security or performance. In what follows, we briefly

summarize the contributions of this thesis.

In chapter 3, the security of two lightweight block ciphers, namely, Khudra and Piccolo

have been investigated using the plain MitM attack. By considering the F-function of Khudra

as a black box mapping 16-bit to 16-bit (instead of of considering it as 6 rounds and each

round has 2 4-bit S-boxes), we are able to find the longest distinguisher for Khudra which

covers 6 rounds. Taking into account the key schedule, we choose one of these distinguish-

ers that can be employed in a key recovery attack against 13 rounds of Khudra. Using the

same distinguisher to attack 14 rounds of Khudra requires guessing the whole master key.

Therefore, we employed another 6-round distinguisher to attack 14 rounds of Khudra. We

also analyzed two versions of Piccolo, namely, Piccolo-80 and Piccolo-128. For Piccolo-80,

we noticed that the distinguisher that can be built using the smallest number of parameters

will not lead to the best attack; and the one that lead to the best attack requires offline

computations greater than the exhaustive search. Therefore, we investigated the F-function

in order to reduce the number of required parameters. Furthermore, by exploiting the prop-

erties of the linear diffusion layer M, we are able to build such distinguisher (that covers

5 rounds) using only 5 parameters. This distinguisher is then extended, by exploiting the

key schedule relations, to attack 14 rounds of Piccolo-80. In order to reduce the time and

memory complexities of the offline phase, we store a 2−7 fraction of the precomputation table

125

H and repeat the attack for 27 times. Since Piccolo-80 and Piccolo-128 have different key

schedules, utilizing the same ideas that are exploited on Piccolo-80 will not lead to the best

attack. In our attacks on Piccolo-128, we utilized the key dependent sieving technique, in

order to build the longest distinguisher. This enables us to build a 7-round distinguisher.

Then, this distinguisher is utilized in attacking 16 rounds of Piccolo-128 exploiting the key

schedule relations. Using the same distinguisher to attack 17 rounds of Piccolo-128 will ren-

der the time complexity of the attack more than the exhaustive search. Therefore, we use

another distinguisher that covers 6 rounds, but can be extended to a 17-round attack against

Piccolo-128 by exploiting the key schedule relations.

In chapter 4, we investigated the security of a tweakable block cipher, namely, Kiasu-

BC, using MitM with efficient enumeration attack. The designers’ security claims regarding

this cipher are based on the extensive security studies of AES-128, because Kiasu-BC is a

tweakable version of AES-128. The best attack on AES-128 covers 7 rounds using the MitM

with efficient enumerations. Therefore, the designers of Kiasu-BC concluded that no more

than 7 rounds of Kiasu-BC can be attacked using the MitM with efficient enumeration attack.

However, we utilized the freedom of the tweak to prove that there is an 8-round attack against

Kiasu-BC utilizing the MitM with efficient enumeration attack. The previous distinguisher

that are exploited in the 7-round attack against AES-128 covers 4 rounds. Exploiting the

tweak, we employed a difference at byte 0 of the tweak equal the b-δ-set. This enables us to

extend the previous 4-round distinguisher to a 5-round distinguisher. Then, this distinguisher

is used to attack 8 rounds of Kiasu-BC. In this attack we utilized the b-δ-set, where b = 5,

instead of δ-set to reduce the memory complexity of the attack.

In chapter 5, we investigated the security of a lightweight tweakable block cipher family,

namely, SKINNY under the impossible differential attack. While in Kiasu-BC, there are

two independent inputs for the tweak and key, in SKINNY there is only one input called

tweakey that compromise both the key and the tweak. Therefore, if the tweakey length

is t bits and we choose the tweak tk bits then the security margin of the cipher will be

t − tk bits. This means that the degree of freedom in the tweak will reduce the security

margin of the cipher. Consequently, we chose to focus on the cases where tk = 0, and

hence the security margin of the cipher will be bounded by t bits. The longest impossible

differential distinguisher that begins and ends with only one active byte covers 11 rounds,

and there are 16 such extinguishers. All our attacks against all the 6 variants of SKINNY

utilize the same distinguisher. We utilized the structure’s properties of SKINNY to improve

the previous results and present the best attacks against SKINNY in the single-key model.

More precisely, we utilized the fact that the tweakey addition are only performed on the

first two rows of the state, the binary nature of the MixColumns operations, and the key

126

schedule relations. The previous observations enabled us to launch 18, 20, and 22 rounds of

SKINNY-n-n, SKINNY-n-2n, and SKINNY-n-3n (n = 64 or 128), respectively.

In chapter 6, the security of a low energy consumption block cipher, namely, Midori128 is

studied under two different attacks, namely, multiple impossible and truncated differential

attacks. Both attacks on Midori128 exploit the binary nature of the MixColumns operation

along with the fact that each 8-bit S-box of the four different utilized S-boxes in Midori128 is

composed of two 4-bit S-boxes. In the first part of chapter 6, we present the longest impossible

differential distinguisher against Midori128 that covers complete 7 rounds including the linear

layer of the last round. Then, we exploited four of such distinguishers to launch multiple

impossible differential attack against 11 rounds of Midori128 including the pre-whitening

and post-whitening keys. This attack enhances the previous results on Midori128 using

impossible differential attack. In the second part of chapter 6, by utilizing the previous

observations, we are able to minimize the number of active S-boxes considering only the

single bit differences in the input and output of the active S-boxes. In order to maintain the

single bit difference pattern, we studied the other operations in the round function and then

developed an algorithm to find the longest number of rounds that have probability greater

than 2−128 to act as a distinguisher. Using our algorithm, we found 10 round differential with

probability 2−118. Then, using this 10-round distinguisher, we are able to attack 13 rounds

of Midori128.

In chapter 7, the security of the standard Russian block cipher Kuznyechik is evaluated

using MitM with efficient enumeration technique. The previously best MitM with efficient

enumeration attack on this cipher covers 5 rounds and works in the chosen ciphertext model.

Here, we showed that there is a 5 round attack using MitM with efficient enumeration in

the chosen plaintext model by changing the place of the distinguisher to be on the top

instead of the middle as in the previous attack. To extend the 5-round attack by one more

round, first, instead of using the structural properties of the linear transformation layer,

we identified the exact values of the coefficient of the MDS matrix. Using this matrix, we

identified all the relations between set on the inputs and outputs of the linear transformation

layer. Second, we exploited one of these relations to present a 3-round distinguisher that

optimizes the time complexity of the attack. Then, this distinguisher is placed on the top

to launch the attack in the chosen plaintext model. In order to extend 3 rounds below the

distinguisher, we performed the matching between the offline and online phases around the

linear transformation instead of matching on state byte.

In chapter 8, we studied the security of an ARX-based block cipher, namely, SPARX-

128 in the known plaintext model using multidimensional zero-correlation attack. First, we

127

proposed a 20-round distinguisher exploiting the zero-correlation property. By studying the

linear transformation layer with the utilized S-box, we found that the 20-round distinguisher

can be extended by one more round using specific linear masks at the end of the 20-round

distinguisher. To attack 24 rounds of SPARX-128/256, we utilized the 20-round distinguisher

and extended it by 4 rounds on the top of it. The top four analysis rounds involve all the

master key bits. Therefore, we utilized the fact that there are two-round linear approximation

with probability 1. By investigating the key schedule, we chose to place this two-round linear

approximation at branch 0. This enables us, using the partial compressing technique, to

attack 24 rounds of SPARX-128/256 using 190 involved key bits instead of the whole master

key. Then, the 24-round attack is extended one more round to launch a 25-round attack using

the 21-round distinguisher instead of the 20-round distinguisher, and as we have specific linear

masks at the beginning and end of the distinguisher, the 25-round attack was launched using

zero-correlation attack. Therefore, this attack requires the full codebook. Then, we exploited

the 21-round distinguisher to attack 22 rounds of SPARX-128/128 using multidimensional

zero-correlation. While in the previous attacks on SPARX-128/256 the analysis rounds were

chosen on the top of the distinguisher (the relations of the rounds keys to the master key

were straightforward), in our attack on SPARX-128/128 the analysis rounds were chosen on

the bottom of the distinguisher (in this case, the relations between the rounds keys and the

master key are not straightforward). Therefore, we performed the attack on the round keys.

Then, from the recovered round keys, we showed how to recover the master key.

9.2 Future work

In what follows, we describe some possible research directions:

- Due to the rapid increase in deploying small computing devices and the difficulty to

utilize the current cryptographic primitives (that are designed for desktop applications,

and hence exploit their powerful in providing high level of security), the development

of lightweight primitives including stream ciphers, block ciphers, hash functions, and

authenticated encryption has become one of the main focus of the symmetric-key re-

search community. NIST will open a a call for submissions for lightweight cryptography

primitives. It is interesting to investigate how the cryptanalytic approaches presented

in this thesis can be utilized to analyze the lightweight symmetric-key primitives that

will be submitted to NIST.

- In the context of helping the designers and cryptanalysts to understand the security

of the proposed cryptographic primitives, many tools have been developed (e.g., see

[123, 64, 109, 121, 140, 122]) to automatically find differential, linear, impossible differ-

ential, integral, and zero-correlation distinguishers. All the previously developed tools

128

focus only on finding the longest distinguisher without combining it with the analy-

sis rounds to obtain a complete attack. However, the longest distinguisher may not

be the one that lead to the best attack when combined with the analysis rounds. In

other words, most of these tools try to model the problem of finding the distinguisher

as an optimization problem which has an objective function describing the best dis-

tinguisher criteria and set of constrains describing the propagation rules through the

distinguisher. Therefore, one interesting research direction is to investigate the au-

tomation of finding/optimizing the whole attack instead of just the distinguisher. This

goal can be achieved by modeling the whole problem instead of just the distinguisher

where the new objective function would compromise both the best distinguisher and

attack criteria and the set of constrains describing the propagation rules through both

the distinguisher and analysis rounds.

- Post-quantum cryptography focuses on the development of public-key primitives that

are not breakable using quantum computers. Current post-quantum algorithms can

be categorized as lattice-based cryptosystems, multivariate cryptosystems, hash-based

cryptosystems, code-based cryptosystems, and isogeny cryptosystems. It is interest-

ing to investigate if any of the (algebraic) attacks applicable on symmetric-key cryp-

tosystems can be extended to multivariate, code-based, or hash-based post-quantum

cryptosystems. The similarities between the two primitives can be seen in their rep-

resentation where they can be represented using a set of boolean equations or using

operations over a small finite field.

129

Bibliography

[1] GOST 28147-89. Information Processing Systems. Cryptographic Protection. Crypto-

graphic Transformation Algorithm. (In Russian).

[2] NIST National Institute of Standards and Technology, Data Encryption Standard

(DES), FIPS-46, 1977.

[3] NIST National Institute of Standards and Technology, Advanced Encryption Standard

(AES), FIPS-197, 2001.

[4] The National Hash Standard of the Russian Federation GOST R 34.11-2012. Russian

Federal Agency on Technical Regulation and Metrology report, 2012. https://www.

tc26.ru/en/GOSTR34112012/GOSTR34112012eng.pdf.

[5] The National Standard of the Russian Federation GOST R 34. -20 . Russian Federal

Agency on Technical Regulation and Metrology report, 2015. http://www.tc26.ru/

en/standard/draft/ENGGOSTRbsh.pdf.

[6] A. Abdelkhalek, R. AlTawy, M. Tolba, and A. M. Youssef. Meet-in-the-Middle Attacks

on Reduced-Round Hierocrypt-3. In K. Lauter and F. Rodŕıguez-Henŕıquez, editors,

Progress in Cryptology – LATINCRYPT 2015: 4th International Conference on Cryp-

tology and Information Security in Latin America, Guadalajara, Mexico, August 23-26,

2015, Proceedings, pages 187–203. Springer International Publishing, 2015. ISBN 978-

3-319-22174-8.

[7] A. Abdelkhalek, Y. Sasaki, Y. Todo, M. Tolba, and A. M. Youssef. MILP Modeling for

(Large) S-boxes to Optimize Probability of Differential Characteristics. In FSE 2018.

Accepted.

[8] A. Abdelkhalek, M. Tolba, and A. M. Youssef. Improved Key Recovery Attack

on Round-reduced Hierocrypt-L1 in the Single-Key Setting. In S. R. Chakraborty,

P. Schwabe, and J. Solworth, editors, Security, Privacy, and Applied Cryptography

Engineering: 5th International Conference, SPACE 2015, Jaipur, India, October 3-

7, 2015, Proceedings, pages 139–150. Springer International Publishing, 2015. ISBN

978-3-319-24126-5.

130

https://www.tc26.ru/en/GOSTR34112012/GOST R 34 112012 eng.pdf
https://www.tc26.ru/en/GOSTR34112012/GOST R 34 112012 eng.pdf
http://www.tc26.ru/en/standard/draft/ENG GOST R bsh.pdf
http://www.tc26.ru/en/standard/draft/ENG GOST R bsh.pdf

[9] A. Abdelkhalek, M. Tolba, and A. M. Youssef. Impossible Differential Attack on Re-

duced Round SPARX-64/128. In M. Joye and A. Nitaj, editors, Progress in Cryptology

- AFRICACRYPT 2017: 9th International Conference on Cryptology in Africa, Dakar,

Senegal, May 24-26, 2017, Proceedings, pages 135–146. Springer International Publish-

ing, Cham, 2017. ISBN 978-3-319-57339-7.

[10] S. Ahmadi, Z. Ahmadian, J. Mohajeri, and M. R. Aref. Low-Data Complexity

Biclique Cryptanalysis of Block Ciphers With Application to Piccolo and HIGHT.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 9:

1641–1652, 2014.

[11] Akshima, D. Chang, M. Ghosh, A. Goel, and S. K. Sanadhya. Improved Meet-in-

the-Middle Attacks on 7 and 8-Round ARIA-192 and ARIA-256. In A. Biryukov and

V. Goyal, editors, Progress in Cryptology – INDOCRYPT 2015: 16th International

Conference on Cryptology in India, Bangalore, India, December 6-9, 2015, Proceedings,

pages 198–217. Springer International Publishing, 2015. ISBN 978-3-319-26617-6.

[12] Akshima, D. Chang, M. Ghosh, A. Goel, and S. K. Sanadhya. Single Key Recovery

Attacks on 9-Round Kalyna-128/256 and Kalyna-256/512. In S. Kwon and A. Yun,

editors, Information Security and Cryptology - ICISC 2015: 18th International Con-

ference, Seoul, South Korea, November 25-27, 2015, Revised Selected Papers, pages

119–135. Springer International Publishing, 2016. ISBN 978-3-319-30840-1.

[13] R. AlTawy, O. Duman, and A. M. Youssef. Fault Analysis of Kuznyechik. IACR

Cryptology ePrint Archive, 2015/347, 2015. https://eprint.iacr.org/2015/347.

pdf.

[14] R. AlTawy and A. M. Youssef. A Meet in the Middle Attack on Reduced Round

Kuznyechik. IEICE Transactions, 98-A(10):2194–2198, 2015.

[15] R. Ankele, S. Banik, A. Chakraborti, E. List, F. Mendel, S. M. Sim, and G. Wang.

Related-Key Impossible-Differential Attack on Reduced-Round SKINNY. Cryptology

ePrint Archive, Report 2016/1127, 2016. http://eprint.iacr.org/2016/1127.

[16] K. Aoki and Y. Sasaki. Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0

and SHA-1. In S. Halevi, editor, CRYPTO, volume 5677 of Lecture Notes in Computer

Science, pages 70–89. Springer Berlin Heidelberg, 2009.

[17] S. Azimi, Z. Ahmadian, J. Mohajeri, and M. Aref. Impossible differential cryptanalysis

of Piccolo lightweight block cipher. In Information Security and Cryptology (ISCISC),

11th International ISC Conference on, pages 89–94, Sept 2014.

131

https://eprint.iacr.org/2015/347.pdf
https://eprint.iacr.org/2015/347.pdf
http://eprint.iacr.org/2016/1127

[18] S. Banik, A. Bogdanov, T. Isobe, K. Shibutani, H. Hiwatari, T. Akishita, and F. Regaz-

zoni. Midori: A Block Cipher for Low Energy. In T. Iwata and J. Cheon, editors, Ad-

vances in Cryptology ASIACRYPT 2015, volume 9453 of Lecture Notes in Computer

Science, pages 411–436. Springer Berlin Heidelberg, 2015. ISBN 978-3-662-48799-0.

[19] A. BANNIER, N. BODIN, and E. FILIOL. Automatic Search for a Maximum Prob-

ability Differential Characteristic in a Substitution-Permutation Network. Cryptology

ePrint Archive, Report 2016/652, 2016. http://eprint.iacr.org/2016/652.

[20] A. Bar-On and N. Keller. A 270 Attack on the Full MISTY1. In M. Robshaw and

J. Katz, editors, Advances in Cryptology – CRYPTO 2016: 36th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,

Part I, pages 435–456. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. ISBN

978-3-662-53018-4.

[21] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. The

SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive,

Report 2013/404, 2013. http://eprint.iacr.org/2013/404.

[22] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers. SIMON

and SPECK: Block Ciphers for the Internet of Things. Cryptology ePrint Archive,

Report 2015/585, 2015. http://eprint.iacr.org/2015/585.

[23] C. Beierle, J. Jean, S. Klbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,

and S. M. Sim. Skinny family of block ciphers: Cryptanalysis competition, 2016.

[24] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,

and S. M. Sim. The SKINNY Family of Block Ciphers and Its Low-Latency Variant

MANTIS. In M. Robshaw and J. Katz, editors, Advances in Cryptology – CRYPTO

2016, pages 123–153. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016. ISBN 978-

3-662-53008-5.

[25] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche. Keccak sponge function family

main document, 2010. http://keccak.noekeon.org/Keccak-main-2.1.pdf.

[26] E. Biham, A. Biryukov, and A. Shamir. Cryptanalysis of Skipjack Reduced to 31

Rounds Using Impossible Differentials. In J. Stern, editor, Advances in Cryptology -

EUROCRYPT 99, volume 1592 of Lecture Notes in Computer Science, pages 12–23.

Springer Berlin Heidelberg, 1999. ISBN 978-3-540-65889-4.

[27] E. Biham, O. Dunkelman, and N. Keller. Enhancing Differential-Linear Cryptanalysis.

In Y. Zheng, editor, Advances in Cryptology — ASIACRYPT 2002: 8th International

132

http://eprint.iacr.org/2016/652
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2015/585
http: //keccak.noekeon.org/Keccak-main-2.1.pdf

Conference on the Theory and Application of Cryptology and Information Security

Queenstown, New Zealand, December 1–5, 2002 Proceedings, pages 254–266. Springer

Berlin Heidelberg, 2002. ISBN 978-3-540-36178-7.

[28] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In

A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology-CRYPT0’ 90: Pro-

ceedings, pages 2–21. Springer Berlin Heidelberg, 1991. ISBN 978-3-540-38424-3.

[29] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption Standard,

volume 28. Springer, 1993.

[30] E. Biham and A. Shamir. Differential Cryptanalysis of the Full 16-round DES. In E. F.

Brickell, editor, Advances in Cryptology — CRYPTO’ 92: 12th Annual International

Cryptology Conference Santa Barbara, California, USA August 16–20, 1992 Proceed-

ings, pages 487–496. Springer Berlin Heidelberg, 1993. ISBN 978-3-540-48071-6.

[31] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen. A More Efficient AES

Threshold Implementation. In D. Pointcheval and D. Vergnaud, editors, Progress in

Cryptology – AFRICACRYPT 2014, pages 267–284. Springer International Publishing,

2014. ISBN 978-3-319-06734-6.

[32] A. Biryukov, D. Khovratovich, and L. Perrin. Multiset-Algebraic Cryptanalysis of

Reduced Kuznyechik, Khazad, and secret SPNs. IACR Transactions on Symmetric

Cryptology, 2016(2):226–247, 2017.

[33] A. Biryukov, L. Perrin, and A. Udovenko. Reverse-Engineering the S-Box of Streebog,

Kuznyechik and STRIBOBr1. In M. Fischlin and J.-S. Coron, editors, Advances in

Cryptology – EUROCRYPT 2016: 35th Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,

Proceedings, Part I, volume 9665, pages 372–402. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2016. ISBN 978-3-662-49890-3.

[34] A. Biryukov, A. Roy, and V. Velichkov. Differential Analysis of Block Ciphers SIMON

and SPECK. In C. Cid and C. Rechberger, editors, Fast Software Encryption: 21st

International Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected

Papers, pages 546–570. Springer Berlin Heidelberg, 2015. ISBN 978-3-662-46706-0.

[35] A. Biryukov and V. Velichkov. Automatic Search for Differential Trails in ARX Ciphers.

In J. Benaloh, editor, Topics in Cryptology CT-RSA 2014, volume 8366 of Lecture

Notes in Computer Science, pages 227–250. Springer, 2014.

133

[36] A. Biryukov, V. Velichkov, and Y. Le Corre. Automatic Search for the Best Trails

in ARX: Application to Block Cipher Speck. In T. Peyrin, editor, Fast Software En-

cryption: 23rd International Conference, FSE 2016, Bochum, Germany, March 20-23,

2016, Revised Selected Papers, pages 289–310. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2016. ISBN 978-3-662-52993-5.

[37] A. Bogdanov. Analysis and Design of Block Cipher Constructions . Ph.D. The-

sis, Ruhr-Universität Bochum, 2009. https://www.emsec.rub.de/media/crypto/

attachments/files/2011/04/thesis_andrey.pdf.

[38] A. Bogdanov, D. Chang, M. Ghosh, and S. Sanadhya. Bicliques with Minimal Data

and Time Complexity for AES. In J. Lee and J. Kim, editors, Information Security and

Cryptology - ICISC 2014, volume 8949 of Lecture Notes in Computer Science, pages

160–174. Springer International Publishing, 2015. ISBN 978-3-319-15942-3.

[39] A. Bogdanov, H. Geng, M. Wang, L. Wen, and B. Collard. Zero-Correlation Linear

Cryptanalysis with FFT and Improved Attacks on ISO Standards Camellia and CLE-

FIA. In T. Lange, K. Lauter, and P. Lisoněk, editors, Selected Areas in Cryptography

– SAC 2013: 20th International Conference, Burnaby, BC, Canada, August 14-16,

2013, Revised Selected Papers, pages 306–323. Springer Berlin Heidelberg, 2014. ISBN

978-3-662-43414-7.

[40] A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique Cryptanalysis of the Full

AES. In D. Lee and X. Wang, editors, Advances in Cryptology ASIACRYPT 2011,

volume 7073 of Lecture Notes in Computer Science, pages 344–371. Springer Berlin

Heidelberg, 2011. ISBN 978-3-642-25384-3.

[41] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. Robshaw,

Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. In

P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems

- CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages 450–466.

Springer Berlin Heidelberg, 2007. ISBN 978-3-540-74734-5.

[42] A. Bogdanov, G. Leander, K. Nyberg, and M. Wang. Integral and Multidimensional

Linear Distinguishers with Correlation Zero. In X. Wang and K. Sako, editors, Advances

in Cryptology – ASIACRYPT 2012: 18th International Conference on the Theory and

Application of Cryptology and Information Security, Beijing, China, December 2-6,

2012. Proceedings, pages 244–261. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-

34961-4.

134

https://www.emsec.rub.de/media/crypto/attachments/files/2011/04/thesis_andrey.pdf
https://www.emsec.rub.de/media/crypto/attachments/files/2011/04/thesis_andrey.pdf

[43] A. Bogdanov and C. Rechberger. A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis

of the Lightweight Block Cipher KTANTAN. In A. Biryukov, G. Gong, and D. R. Stin-

son, editors, Selected Areas in Cryptography, volume 6544 of Lecture Notes in Computer

Science, pages 229–240. Springer Berlin Heidelberg, 2010.

[44] J. Borst, L. R. Knudsen, and V. Rijmen. Two Attacks on Reduced IDEA. In W. Fumy,

editor, Advances in Cryptology — EUROCRYPT ’97: International Conference on the

Theory and Application of Cryptographic Techniques Konstanz, Germany, May 11–15,

1997 Proceedings, pages 1–13. Springer Berlin Heidelberg, 1997. ISBN 978-3-540-69053-

5.

[45] S. Bulygin, M. Walter, and J. Buchmann. Full analysis of PRINTcipher with respect to

invariant subspace attack: efficient key recovery and countermeasures. Designs, Codes

and Cryptography, 73(3):997–1022, 2014.

[46] C. Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN - A Family

of Small and Efficient Hardware-Oriented Block Ciphers. In C. Clavier and K. Gaj,

editors, Cryptographic Hardware and Embedded Systems - CHES 2009, volume 5747 of

Lecture Notes in Computer Science, pages 272–288. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2009. ISBN 978-3-642-04137-2.

[47] A. Canteaut, T. Fuhr, H. Gilbert, M. Naya-Plasencia, and J.-R. Reinhard. Multiple

differential cryptanalysis of round-reduced PRINCE. In C. Cid and C. Rechberger, edi-

tors, Fast Software Encryption - FSE 2014, volume 8540 of Lecture Notes in Computer

Science, pages 591–610. Springer Berlin Heidelberg, 2015.

[48] A. Canteaut, M. Naya-Plasencia, and B. Vayssière. Sieve-in-the-Middle: Improved

MITM Attacks. In R. Canetti and J. A. Garay, editors, Advances in Cryptology

CRYPTO 2013, volume 8042 of Lecture Notes in Computer Science, pages 222–240.

Springer-Verlag Berlin Heidelberg, 2013.

[49] M. Çoban, F. Karakoç, and Özkan Boztaş. Biclique Cryptanalysis of TWINE. In

J. Pieprzyk, A.-R. Sadeghi, and M. Manulis, editors, Cryptology and Network Secu-

rity, volume 7712 of Lecture Notes in Computer Science, pages 43–55. Springer Berlin

Heidelberg, 2012. ISBN 978-3-642-35404-5.

[50] D. Chaum and J.-H. Evertse. Cryptanalysis of DES with a reduced number of rounds;

sequence of linear factors in block ciphers. In W. HC, editor, Advances in cryptol-

ogy CRYPTO85, volume 218 of Lecture Notes in Computer Science, pages 192–211.

Springer, Berlin, 1986.

135

[51] Z. Chen, H. Chen, and X. Wang. Cryptanalysis of Midori128 Using Impossible Differ-

ential Techniques. In F. Bao, L. Chen, R. H. Deng, and G. Wang, editors, Information

Security Practice and Experience, pages 1–12. Springer, 2016. ISBN 978-3-319-49151-6.

[52] J. Daemen, L. Knudsen, and V. Rijmen. The block cipher Square. In E. Biham, editor,

Fast Software Encryption: 4th International Workshop, FSE’97 Haifa, Israel, January

20–22 1997 Proceedings, pages 149–165. Springer Berlin Heidelberg, 1997. ISBN 978-

3-540-69243-0.

[53] J. Daemen and V. Rijmen. The Wide Trail Design Strategy. In B. Honary, editor, Cryp-

tography and Coding: 8th IMA International Conference Cirencester, UK, December

17–19, 2001 Proceedings, pages 222–238. Springer Berlin Heidelberg, 2001. ISBN 978-

3-540-45325-3.

[54] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New York, Inc.,

2002. ISBN 3540425802.

[55] H. Demirci and A. A. Selçuk. A Meet-in-the-Middle Attack on 8-Round AES. In

K. Nyberg, editor, Fast Software Encryption: 15th International Workshop, FSE 2008,

Lausanne, Switzerland, February 10-13, 2008, Revised Selected Papers, pages 116–126.

Springer Berlin Heidelberg, 2008. ISBN 978-3-540-71039-4.

[56] H. Demirci, İ. Taşkın, M. Çoban, and A. Baysal. Improved Meet-in-the-Middle Attacks

on AES. In B. Roy and N. Sendrier, editors, Progress in Cryptology - INDOCRYPT

2009: 10th International Conference on Cryptology in India, New Delhi, India, Decem-

ber 13-16, 2009. Proceedings, pages 144–156. Springer Berlin Heidelberg, 2009. ISBN

978-3-642-10628-6.

[57] P. Derbez and P.-A. Fouque. Exhausting Demirci-Selçuk Meet-in-the-Middle Attacks

Against Reduced-Round AES. In S. Moriai, editor, Fast Software Encryption: 20th

International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected

Papers, volume 8424, pages 541–560. Springer Berlin Heidelberg, Berlin, Heidelberg,

2014. ISBN 978-3-662-43933-3.

[58] P. Derbez, P.-A. Fouque, and J. Jean. Improved Key Recovery Attacks on Reduced-

Round AES in the Single-Key Setting. In T. Johansson and P. Q. Nguyen, editors,

Advances in Cryptology – EUROCRYPT 2013: 32nd Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May

26-30, 2013. Proceedings, pages 371–387. Springer Berlin Heidelberg, 2013. ISBN 978-

3-642-38348-9.

136

[59] W. Diffie and M. E. Hellman. Special Feature Exhaustive Cryptanalysis of the NBS

Data Encryption Standard. Computer, 10(6):74–84, June 1977.

[60] D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. Groschdl, and A. Biryukov. Design

Strategies for ARX with Provable Bounds: SPARX and LAX (Full Version). Cryptol-

ogy ePrint Archive, Report 2016/984, 2016. http://eprint.iacr.org/2016/984.

[61] D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. Großschädl, and A. Biryukov. Design

Strategies for ARX with Provable Bounds: SPARX and LAX. In J. H. Cheon and

T. Takagi, editors, Advances in Cryptology – ASIACRYPT 2016: 22nd International

Conference on the Theory and Application of Cryptology and Information Security,

Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I, pages 484–513. Springer

Berlin Heidelberg, 2016. ISBN 978-3-662-53887-6.

[62] C. Dobraunig, M. Eichlseder, and F. Mendel. Square Attack on 7-Round Kiasu-BC.

In M. Manulis, A.-R. Sadeghi, and S. Schneider, editors, Applied Cryptography and

Network Security: 14th International Conference, ACNS 2016, Guildford, UK, June

19-22, 2016. Proceedings, pages 500–517. Springer International Publishing, Cham,

2016. ISBN 978-3-319-39555-5.

[63] O. Dunkelman, N. Keller, and A. Shamir. Improved Single-Key Attacks on 8-Round

AES-192 and AES-256. In M. Abe, editor, Advances in Cryptology - ASIACRYPT 2010:

16th International Conference on the Theory and Application of Cryptology and Infor-

mation Security, Singapore, December 5-9, 2010. Proceedings, pages 158–176. Springer

Berlin Heidelberg, 2010. ISBN 978-3-642-17373-8.

[64] D. Gérault and P. Lafourcade. Related-Key Cryptanalysis of Midori. In O. Dunkelman

and S. K. Sanadhya, editors, Progress in Cryptology – INDOCRYPT 2016, pages 287–

304. Springer, 2016. ISBN 978-3-319-49890-4.

[65] L. Grassi, C. Rechberger, , and S. Rnjom. Subspace Trail Cryptanalysis and its Appli-

cations to AES. Cryptology ePrint Archive, Report 2016/592, 2016. http://eprint.

iacr.org/2016/592.

[66] J. Guo, J. Jean, I. Nikolić, K. Qiao, Y. Sasaki, and S. M. Sim. Invariant Subspace

Attack Against Full Midori64. Cryptology ePrint Archive, Report 2015/1189, 2015.

http://eprint.iacr.org/2015/1189.

[67] J. Guo, J. Jean, I. Nikolić, and Y. Sasaki. Meet-in-the-Middle Attacks on Generic

Feistel Constructions. In P. Sarkar and T. Iwata, editors, Advances in Cryptology

– ASIACRYPT 2014, pages 458–477. Springer Berlin Heidelberg, Berlin, Heidelberg,

2014. ISBN 978-3-662-45611-8.

137

http://eprint.iacr.org/2016/984
http://eprint.iacr.org/2016/592
http://eprint.iacr.org/2016/592
http://eprint.iacr.org/2015/1189

[68] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B.-S. Koo, C. Lee, D. Chang, J. Lee,

K. Jeong, H. Kim, J. Kim, and S. Chee. HIGHT: A New Block Cipher Suitable for Low-

resource Device. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and

Embedded Systems - CHES 2006, volume 4249 of Lecture Notes in Computer Science,

pages 46–59. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. ISBN 3-540-46559-6,

978-3-540-46559-1.

[69] T. Isobe and K. Shibutani. Security Analysis of the Lightweight Block Ciphers XTEA,

LED and Piccolo. In W. Susilo, Y. Mu, and J. Seberry, editors, Information Security

and Privacy, volume 7372 of Lecture Notes in Computer Science, pages 71–86. Springer

Berlin Heidelberg, 2012. ISBN 978-3-642-31447-6.

[70] T. Jakobsen and L. R. Knudsen. The interpolation attack on block ciphers. In E. Biham,

editor, Fast Software Encryption: 4th International Workshop, FSE’97 Haifa, Israel,

January 20–22 1997 Proceedings, pages 28–40. Springer Berlin Heidelberg, 1997. ISBN

978-3-540-69243-0.

[71] J. Jean, I. Nikolić, and T. Peyrin. KIASU. Submission to the CAESAR competition,

2014. http://competitions.cr.yp.to/round1/kiasuv1.pdf.

[72] J. Jean, I. Nikolić, and T. Peyrin. Tweaks and Keys for Block Ciphers: The TWEAKEY

Framework. In P. Sarkar and T. Iwata, editors, Advances in Cryptology – ASIACRYPT

2014: 20th International Conference on the Theory and Application of Cryptology and

Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings,

Part II, pages 274–288. Springer Berlin Heidelberg, 2014. ISBN 978-3-662-45608-8.

[73] J. Jean, I. Nikolić, and T. Peyrin. Tweaks and Keys for Block Ciphers: the TWEAKEY

Framework. Cryptology ePrint Archive, Report 2014/831, 2014. http://eprint.iacr.

org/.

[74] K. Jeong. Cryptanalysis of block cipher Piccolo suitable for cloud computing. The

Journal of Supercomputing, 66(2):829–840, 2013.

[75] K. Jeong, H. Kang, C. Lee, J. Sung, and S. Hong. Biclique Cryptanalysis of Lightweight

Block Ciphers PRESENT, Piccolo and LED. IACR Cryptology ePrint Archive,

2012/621, 2012. https://eprint.iacr.org/2012/621.pdf.

[76] F. Karakoç, Ö. M. Sağdıçoğlu, M. E. Gönen, and O. Ersoy. Impossible Differential

Cryptanalysis of 16/18-Round Khudra. In A. Bogdanov, editor, Lightweight Cryptog-

raphy for Security and Privacy: 5th International Workshop, LightSec 2016, Aksaray,

Turkey, September 21-22, 2016, Revised Selected Papers, pages 33–44. Springer Inter-

national Publishing, Cham, 2017.

138

http://competitions.cr.yp.to/round1/kiasuv1.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
https://eprint.iacr.org/2012/621.pdf

[77] J. Kim, S. Hong, S. Lee, J. Song, and H. Yang. Truncated Differential Attacks on

8-Round CRYPTON. In J.-I. Lim and D.-H. Lee, editors, Information Security and

Cryptology - ICISC 2003: 6th International Conference, Seoul, Korea, November 27-

28, 2003. Revised Papers, pages 446–456. Springer Berlin Heidelberg, 2004. ISBN

978-3-540-24691-6.

[78] L. Knudsen, G. Leander, A. Poschmann, and M. Robshaw. PRINTcipher: A Block

Cipher for IC-Printing. In S. Mangard and F.-X. Standaert, editors, Cryptographic

Hardware and Embedded Systems, CHES 2010, volume 6225 of Lecture Notes in Com-

puter Science, pages 16–32. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-15030-2.

[79] L. Knudsen and D. Wagner. Integral Cryptanalysis. In J. Daemen and V. Rijmen,

editors, Fast Software Encryption: 9th International Workshop, FSE 2002 Leuven,

Belgium, February 4–6, 2002 Revised Papers, pages 112–127. Springer Berlin Heidel-

berg, 2002. ISBN 978-3-540-45661-2.

[80] L. R. Knudsen. Truncated and higher order differentials. In B. Preneel, editor, Fast

Software Encryption: Second International Workshop Leuven, Belgium, December 14–

16, 1994 Proceedings, pages 196–211. Springer Berlin Heidelberg, 1995. ISBN 978-3-

540-47809-6.

[81] Knudsen, Lars R. and Robshaw, M. J. B. and Wagner, David. Truncated Differentials

and Skipjack. In M. Wiener, editor, Advances in Cryptology — CRYPTO’ 99: 19th

Annual International Cryptology Conference Santa Barbara, California, USA, August

15–19, 1999 Proceedings, pages 165–180. Springer Berlin Heidelberg, 1999. ISBN 978-

3-540-48405-9.

[82] S. Kolay and D. Mukhopadhyay. Khudra: A New Lightweight Block Cipher for FPGAs.

In R. S. Chakraborty, V. Matyas, and P. Schaumont, editors, Security, Privacy, and

Applied Cryptography Engineering, volume 8804 of Lecture Notes in Computer Science,

pages 126–145. Springer International Publishing, 2014.

[83] T. Koyama, L. Wang, Y. Sasaki, K. Sakiyama, and K. Ohta. New Truncated Differential

Cryptanalysis on 3D Block Cipher. In M. D. Ryan, B. Smyth, and G. Wang, editors,

Information Security Practice and Experience: 8th International Conference, ISPEC

2012, Hangzhou, China, April 9-12, 2012. Proceedings, pages 109–125. Springer Berlin

Heidelberg, 2012. ISBN 978-3-642-29101-2.

[84] X. Lai. Higher Order Derivatives and Differential Cryptanalysis. In R. E. Blahut, D. J.

Costello, U. Maurer, and T. Mittelholzer, editors, Communications and Cryptography:

Two Sides of One Tapestry, pages 227–233. Springer US, 1994. ISBN 978-1-4615-2694-

0.

139

[85] S. K. Langford and M. E. Hellman. Differential-Linear Cryptanalysis. In Y. G.

Desmedt, editor, Advances in Cryptology — CRYPTO ’94: 14th Annual International

Cryptology Conference Santa Barbara, California, USA August 21–25, 1994 Proceed-

ings, pages 17–25. Springer Berlin Heidelberg, 1994. ISBN 978-3-540-48658-9.

[86] G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. A Cryptanalysis of

PRINTcipher: The Invariant Subspace Attack. In P. Rogaway, editor, Advances in

Cryptology – CRYPTO 2011: 31st Annual Cryptology Conference, Santa Barbara, CA,

USA, August 14-18, 2011. Proceedings, pages 206–221. Springer Berlin Heidelberg,

2011. ISBN 978-3-642-22792-9.

[87] G. Leander, B. Minaud, and S. Rønjom. A Generic Approach to Invariant Subspace

Attacks: Cryptanalysis of Robin, iSCREAM and Zorro. In E. Oswald and M. Fischlin,

editors, Advances in Cryptology – EUROCRYPT 2015: 34th Annual International Con-

ference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,

April 26-30, 2015, Proceedings, Part I, pages 254–283. Springer Berlin Heidelberg,

2015. ISBN 978-3-662-46800-5.

[88] G. Leander, C. Paar, A. Poschmann, and K. Schramm. New Lightweight DES Variants.

In A. Biryukov, editor, Fast Software Encryption, volume 4593 of Lecture Notes in

Computer Science, pages 196–210. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-

74617-1.

[89] S. Lee, S. Hong, S. Lee, J. Lim, and S. Yoon. Truncated Differential Cryptanalysis of

Camellia. In K. Kim, editor, Information Security and Cryptology — ICISC 2001: 4th

International Conference Seoul, Korea, December 6–7,2001 Proceedings, pages 32–38.

Springer Berlin Heidelberg, 2002. ISBN 978-3-540-45861-6.

[90] G. Leurent. Improved Differential-Linear Cryptanalysis of 7-Round Chaskey with Par-

titioning. In M. Fischlin and J.-S. Coron, editors, Advances in Cryptology – EURO-

CRYPT 2016: 35th Annual International Conference on the Theory and Applications

of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I,

pages 344–371. Springer Berlin Heidelberg, 2016. ISBN 978-3-662-49890-3.

[91] L. Li, K. Jia, and X. Wang. Improved Meet-in-the-Middle Attacks on AES-192 and

PRINCE. IACR Cryptology ePrint Archive, Report 2013/573, 2013. https://eprint.

iacr.org/2013/573.

[92] L. Li, K. Jia, X. Wang, and X. Dong. Meet-in-the-Middle Technique for Truncated

Differential and Its Applications to CLEFIA and Camellia. In G. Leander, editor,

Fast Software Encryption: 22nd International Workshop, FSE 2015, Istanbul, Turkey,

140

https://eprint.iacr.org/2013/573
https://eprint.iacr.org/2013/573

March 8-11, 2015, Revised Selected Papers, pages 48–70. Springer Berlin Heidelberg,

2015. ISBN 978-3-662-48116-5.

[93] R. Li and C. Jin. Meet-in-the-middle attacks on 10-round AES-256. Designs, Codes

and Cryptography, 80(3):459–471, 2016.

[94] C. Lim and T. Korkishko. mCrypton A Lightweight Block Cipher for Security of

Low-Cost RFID Tags and Sensors. In J.-S. Song, T. Kwon, and M. Yung, editors,

Information Security Applications, volume 3786 of Lecture Notes in Computer Science,

pages 243–258. Springer Berlin Heidelberg, 2006. ISBN 978-3-540-31012-9.

[95] L. Lin and W. Wu. Meet-in-the-Middle Attacks on Reduced-Round Midori-64. IACR

Cryptology ePrint Archive, 2015/1165, 2015. https://eprint.iacr.org/2015/1165.

pdf.

[96] M. Liskov, R. L. Rivest, and D. Wagner. Tweakable Block Ciphers. Journal of Cryp-

tology, 24(3):588–613, 2011.

[97] G. Liu, M. Ghosh, and L. Song. Security Analysis of SKINNY under Related-Tweakey

Settings. Cryptology ePrint Archive, Report 2016/1108, 2016. http://eprint.iacr.

org/2016/1108.

[98] Y. Liu, Q. Wang, and V. Rijmen. Automatic Search of Linear Trails in ARX with

Applications to SPECK and Chaskey. In M. Manulis, A.-R. Sadeghi, and S. Schneider,

editors, Applied Cryptography and Network Security: 14th International Conference,

ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings, pages 485–499. Springer

International Publishing, 2016. ISBN 978-3-319-39555-5.

[99] J. Lu. Cryptanalysis of Block Ciphers . Ph.D. Thesis, Royal Holloway, Uni-

versity of London, 2008. https://www.ma.rhul.ac.uk/static/techrep/2008/

RHUL-MA-2008-19.pdf.

[100] J. Lu, Y. Wei, J. Kim, and E. Pasalic. The Higher-Order Meet-in-the-Middle Attack

and Its Application to the Camellia Block Cipher. In S. Galbraith and M. Nandi,

editors, Progress in Cryptology - INDOCRYPT 2012: 13th International Conference

on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings, pages 244–

264. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34931-7.

[101] X. Ma and K. Qiao. Related-Key Rectangle Attack on Round-reduced Khudra Block

Cipher. In M. Qiu, S. Xu, M. Yung, and H. Zhang, editors, Network and System

Security: 9th International Conference, NSS 2015, New York, NY, USA, November 3-

5, 2015, Proceedings, pages 331–344. Springer International Publishing, Cham, 2015.

141

https://eprint.iacr.org/2015/1165.pdf
https://eprint.iacr.org/2015/1165.pdf
http://eprint.iacr.org/2016/1108
http://eprint.iacr.org/2016/1108
https://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-19.pdf
https://www.ma.rhul.ac.uk/static/techrep/2008/RHUL-MA-2008-19.pdf

[102] M. Matsui. Linear Cryptanalysis Method for DES Cipher. In T. Helleseth, editor,

Advances in Cryptology EUROCRYPT 93, volume 765 of Lecture Notes in Computer

Science, pages 386–397. Springer Berlin Heidelberg, 1994.

[103] M. Matsui and A. Yamagishi. A New Method for Known Plaintext Attack of FEAL

Cipher. In R. Rueppel, editor, Advances in Cryptology – EUROCRYPT 92, volume

658 of Lecture Notes in Computer Science, pages 81–91. Springer Berlin Heidelberg,

1993. ISBN 978-3-540-56413-3.

[104] F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. The Rebound Attack:

Cryptanalysis of Reduced Whirlpool and Grøstl. In O. Dunkelman, editor, Fast Soft-

ware Encryption: 16th International Workshop, FSE 2009 Leuven, Belgium, February

22-25, 2009 Revised Selected Papers, pages 260–276. Springer Berlin Heidelberg, 2009.

ISBN 978-3-642-03317-9.

[105] A. J. Menezes, S. A. Vanstone, and P. C. V. Oorschot. Handbook of Applied Cryptog-

raphy, chapter 7, pages 223–282. CRC Press, Inc., Boca Raton, FL, USA, 1st edition,

1996. ISBN 0849385237.

[106] M. Minier. On the Security of Piccolo Lightweight Block Cipher against Related-Key

Impossible Differentials. In G. Paul and S. Vaudenay, editors, Progress in Cryptology

INDOCRYPT 2013, volume 8250 of Lecture Notes in Computer Science, pages 308–318.

Springer International Publishing, 2013. ISBN 978-3-319-03514-7.

[107] S. Moriai, M. Sugita, K. Aoki, and M. Kanda. Security of E2 against Truncated Differ-

ential Cryptanalysis. In H. Heys and C. Adams, editors, Selected Areas in Cryptography:

6th Annual International Workshop, SAC’99 Kingston, Ontario, Canada, August 9–10,

1999 Proceedings, pages 106–117. Springer Berlin Heidelberg, 2000. ISBN 978-3-540-

46513-3.

[108] N. Mouha, V. Velichkov, C. D. Cannire, and B. Preneel. The Differential Analysis

of S-Functions. In A. Biryukov, G. Gong, and D. R. Stinson, editors, Selected Areas

in Cryptography, volume 6544 of Lecture Notes in Computer Science, pages 36–56.

Springer, 2011.

[109] N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and Linear Cryptanalysis

Using Mixed-Integer Linear Programming. In C.-K. Wu, M. Yung, and D. Lin, edi-

tors, Information Security and Cryptology, volume 7537 of Lecture Notes in Computer

Science, pages 57–76. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-34703-0.

[110] K. Nyberg and L. R. Knudsen. Provable security against a differential attack. Journal

of Cryptology, 8(1):27–37, 1995.

142

[111] R. Oliynykov, I. Gorbenko, O. Kazymyrov, V. Ruzhentsev, O. Kuznetsov, Y. Gorbenko,

A. Boiko, O. Dyrda, V. Dolgov, and A. Pushkaryov. A New Standard of Ukraine: The

Kupyna Hash Function . IACR Cryptology ePrint Archive, 2015/885, 2015. https://

eprint.iacr.org/2015/885.pdf.

[112] T. Peyrin and Y. Seurin. Counter-in-Tweak: Authenticated Encryption Modes for

Tweakable Block Ciphers. In M. Robshaw and J. Katz, editors, Advances in Cryptology

– CRYPTO 2016, pages 33–63. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

ISBN 978-3-662-53018-4.

[113] S. Rasoolzadeh, Z. Ahmadian, M. Salmasizadeh, and M. R. Aref. An Improved Trun-

cated Di erential Cryptanalysis of KLEIN. IACR Cryptology ePrint Archive, Report

2014/485, 2014. https://eprint.iacr.org/2014/485.pdf.

[114] S. Sadeghi, T. Mohammadi, and N. Bagheri. Cryptanalysis of Reduced round SKINNY

Block Cipher. Cryptology ePrint Archive, Report 2016/1120, 2016. http://eprint.

iacr.org/2016/1120.

[115] Y. Sasaki and Y. Todo. New Impossible Differential Search Tool from Design and

Cryptanalysis Aspects. Cryptology ePrint Archive, Report 2016/1181, 2016. http://

eprint.iacr.org/2016/1181.

[116] K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai. Piccolo:

An Ultra-Lightweight Blockcipher. In B. Preneel and T. Takagi, editors, Cryptographic

Hardware and Embedded Systems CHES 2011, volume 6917 of Lecture Notes in Com-

puter Science, pages 342–357. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-23950-

2.

[117] V. Shishkin, D. Dygin, I. Lavrikov, G. Marshalko, V. Rudskoy, and D. Trifonov. Low-

Weight and Hi-End: Draft Russian Encryption Standard, pages 183–188. 2014.

[118] J. Song, K. Lee, and H. Lee. Biclique Cryptanalysis on Lightweight Block Cipher:

HIGHT and Piccolo. Int. J. Comput. Math., 90(12):2564–2580, 2013.

[119] L. Song, Z. Huang, and Q. Yang. Automatic Differential Analysis of ARX Block Ci-

phers with Application to SPECK and LEA. In K. J. Liu and R. Steinfeld, editors,

Information Security and Privacy: 21st Australasian Conference, ACISP 2016, Mel-

bourne, VIC, Australia, July 4-6, 2016, Proceedings, Part II, pages 379–394. Springer

International Publishing, 2016. ISBN 978-3-319-40367-0.

[120] L. Sun, K. Fu, and M. Wang. Improved Zero-Correlation Cryptanalysis on SIMON.

In D. Lin, X. Wang, and M. Yung, editors, Information Security and Cryptology: 11th

143

https://eprint.iacr.org/2015/885.pdf
https://eprint.iacr.org/2015/885.pdf
https://eprint.iacr.org/2014/485.pdf
http://eprint.iacr.org/2016/1120
http://eprint.iacr.org/2016/1120
http://eprint.iacr.org/2016/1181
http://eprint.iacr.org/2016/1181

International Conference, Inscrypt 2015, Beijing, China, November 1-3, 2015, Revised

Selected Papers, pages 125–143. Springer International Publishing, Cham, 2016. ISBN

978-3-319-38898-4.

[121] L. Sun, W. Wang, and M. Wang. MILP-Aided Bit-Based Division Property for Prim-

itives with Non-Bit-Permutation Linear Layers. Cryptology ePrint Archive, Report

2016/811, 2016. http://eprint.iacr.org/2016/811.

[122] L. Sun, W. Wang, and M. Wang. Automatic Search of Bit-Based Division Property for

ARX Ciphers and Word-Based Division Property. Cryptology ePrint Archive, Report

2017/860, 2017. http://eprint.iacr.org/2017/860.

[123] S. Sun, D. Gerault, P. Lafourcade, Q. Yang, Y. Todo, K. Qiao, and L. Hu. Analysis of

AES, SKINNY, and Others with Constraint Programming. Cryptology ePrint Archive,

Report 2017/162, 2017. http://eprint.iacr.org/2017/162.

[124] S. Sun, L. Hu, M. Wang, P. Wang, K. Qiao, X. Ma, D. Shi, L. Song, and K. Fu.

Towards Finding the Best Characteristics of Some Bit-oriented Block Ciphers and Au-

tomatic Enumeration of (Related-key) Differential and Linear Characteristics with Pre-

defined Properties. IACR Cryptology ePrint Archive, Report 2014/747, 2014. https://

eprint.iacr.org/2014/747.pdf.

[125] Y. Todo. Integral Cryptanalysis on Full MISTY1. In R. Gennaro and M. Robshaw,

editors, Advances in Cryptology – CRYPTO 2015: 35th Annual Cryptology Conference,

Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 413–432.

Springer Berlin Heidelberg, 2015. ISBN 978-3-662-47989-6.

[126] M. Tolba, A. Abdelkhalek, and A. M. Youssef. Multidimensional Zero-Correlation

Linear Cryptanalysis of Reduced Round SPARX-128. In SAC 2017. To appear in

Springer LNCS.

[127] M. Tolba, A. Abdelkhalek, and A. M. Youssef. Meet-in-the-Middle Attacks on Round-

Reduced Khudra. In S. R. Chakraborty, P. Schwabe, and J. Solworth, editors, Security,

Privacy, and Applied Cryptography Engineering: 5th International Conference, SPACE

2015, Jaipur, India, October 3-7, 2015, Proceedings, pages 127–138. Springer Interna-

tional Publishing, 2015. ISBN 978-3-319-24126-5.

[128] M. Tolba, A. Abdelkhalek, and A. M. Youssef. A Meet in the Middle Attack on

Reduced Round Kiasu-BC . IEICE TRANSACTIONS on Fundamentals of Electronics,

Communications and Computer Sciences, E99-A(10):1888–1890, 2016.

144

http://eprint.iacr.org/2016/811
http://eprint.iacr.org/2017/860
http://eprint.iacr.org/2017/162
https://eprint.iacr.org/2014/747.pdf
https://eprint.iacr.org/2014/747.pdf

[129] M. Tolba, A. Abdelkhalek, and A. M. Youssef. Meet-in-the-Middle Attacks on Re-

duced Round Piccolo. In T. Güneysu, G. Leander, and A. Moradi, editors, Lightweight

Cryptography for Security and Privacy: 4th International Workshop, LightSec 2015,

Bochum, Germany, September 10-11, 2015, Revised Selected Papers, pages 3–20.

Springer International Publishing, 2016. ISBN 978-3-319-29078-2.

[130] M. Tolba, A. Abdelkhalek, and A. M. Youssef. Truncated and Multiple Differential

Cryptanalysis of Reduced Round Midori128. In M. Bishop and A. C. A. Nascimento,

editors, Information Security: 19th International Conference, ISC 2016, Honolulu, HI,

USA, September 3-6, 2016. Proceedings, pages 3–17. Springer International Publishing,

2016. ISBN 978-3-319-45871-7.

[131] M. Tolba, A. Abdelkhalek, and A. M. Youssef. Impossible Differential Cryptanalysis

of Reduced-Round SKINNY. In M. Joye and A. Nitaj, editors, Progress in Cryptol-

ogy - AFRICACRYPT 2017: 9th International Conference on Cryptology in Africa,

Dakar, Senegal, May 24-26, 2017, Proceedings, pages 117–134. Springer International

Publishing, Cham, 2017. ISBN 978-3-319-57339-7.

[132] M. Tolba, A. Abdelkhalek, and A. M. Youssef. Improved Multiple Impossible Dif-

ferential Cryptanalysis of Midori128 . IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer Sciences, E100-A(8):1733–1737, 2017.

[133] M. Tolba and A. M. Youssef. Improved Meet-in-the-Middle Attacks on Reduced Round

Kuznyechik. In ICISC 2017. To appear in Springer LNCS.

[134] M. Tolba and A. M. Youssef. Generalized MitM attacks on full TWINE. Information

Processing Letters, 116(2):128 – 135, 2016.

[135] Y. Wang and W. Wu. Improved Multidimensional Zero-Correlation Linear Cryptanaly-

sis and Applications to LBlock and TWINE. In W. Susilo and Y. Mu, editors, Informa-

tion Security and Privacy: 19th Australasian Conference, ACISP 2014, Wollongong,

NSW, Australia, July 7-9, 2014. Proceedings, pages 1–16. Springer International Pub-

lishing, Cham, 2014. ISBN 978-3-319-08344-5.

[136] Y. Wang, W. Wu, and X. Yu. Biclique Cryptanalysis of Reduced-Round Piccolo Block

Cipher. In M. Ryan, B. Smyth, and G. Wang, editors, Information Security Practice

and Experience, volume 7232 of Lecture Notes in Computer Science, pages 337–352.

Springer Berlin Heidelberg, 2012. ISBN 978-3-642-29100-5.

[137] Y. Wang, W. Wu, X. Yu, and L. Zhang. Security on LBlock against Biclique Crypt-

analysis. In D. H. Lee and M. Yung, editors, WISA, volume 7690 of Lecture Notes

145

in Computer Science, pages 1–14. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-

35415-1.

[138] L. Wen, M. Wang, A. Bogdanov, and H. Chen. Multidimensional zero-correlation

attacks on lightweight block cipher HIGHT: Improved cryptanalysis of an ISO standard.

Information Processing Letters, 114(6):322 – 330, 2014.

[139] H. Wu, F. Bao, R. H. Deng, and Q. Z. Ye. Improved Truncated Differential Attacks on

SAFER. In K. Ohta and D. Pei, editors, Advances in Cryptology — ASIACRYPT’98:

International Conference on the Theory and Application of Cryptology and Information

Security Beijing, China, October 18–22, 1998 Proceedings, pages 133–147. Springer

Berlin Heidelberg, 1998. ISBN 978-3-540-49649-6.

[140] Z. Xiang, W. Zhang, Z. Bao, and D. Lin. Applying MILP Method to Searching Integral

Distinguishers Based on Division Property for 6 Lightweight Block Ciphers, pages 648–

678. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[141] H. Xu, P. Jia, G. Huang, and X. Lai. Multidimensional Zero-Correlation Linear Crypt-

analysis on 23-Round LBlock-s. In S. Qing, E. Okamoto, K. Kim, and D. Liu, edi-

tors, Information and Communications Security: 17th International Conference, ICICS

2015, Beijing, China, December 9-11, 2015, Revised Selected Papers, pages 97–108.

Springer International Publishing, Cham, 2016. ISBN 978-3-319-29814-6.

[142] Q. Yang, L. Hu, S. Sun, and L. Song. Related-Key Impossible Differential Analysis of

Full Khudra. In K. Ogawa and K. Yoshioka, editors, Advances in Information and Com-

puter Security: 11th International Workshop on Security, IWSEC 2016, Tokyo, Japan,

September 12-14, 2016, Proceedings, pages 135–146. Springer International Publishing,

Cham, 2016. ISBN 978-3-319-44524-3.

[143] B. Zhu and G. Gong. Multidimensional meet-in-the-middle attack and its applications

to KATAN32/48/64. IACR Cryptology ePrint Archive, 2011/619, 2011. https://

eprint.iacr.org/2011/619.pdf.

146

https://eprint.iacr.org/2011/619.pdf
https://eprint.iacr.org/2011/619.pdf

Appendix A

SKINNY-64-128 Key Schedule

Relations

Tables A.1, A.2 illustrate the tweakey and equivalent tweakey relations that are considered

in the analysis rounds. We have 28 tweakey nibbles and 10 equivalent tweakey nibbles that

are used in the analysis rounds. In this appendix, by utilizing the properties of the tweakey

schedule, we show that these tweakey and equivalent tweakey nibbles have only 2116 possible

values.

For the tweakey nibbles TK17[t] and TK19[f], the following relations hold:

TK17[t][0] = TK1[l][0]⊕TK2[l]{0, 1, 2, 3} TK19[f][0] = TK1[l][0]⊕ TK2[l]{0, 1, 3}

TK17[t][1] = TK1[l][1]⊕TK2[l]{0, 1, 2} TK19[f][1] = TK1[l][1]⊕ TK2[l]{0, 1, 2, 3}

TK17[t][2] = TK1[l][2]⊕TK2[l]{1, 2, 3} TK19[f][2] = TK1[l][2]⊕ TK2[l]{0, 1, 2}

TK17[t][3] = TK1[l][3]⊕TK2[l]{0, 2} TK19[f][3] = TK1[l][3]⊕ TK2[l]{1, 2, 3},

for t = 0, 1, 2, 3, 4, 5, 6, f = 2, 0, 4, 7, 6, 3, 5 and l = 9, 15, 8, 13, 10, 14, 12, respectively. From

the above relations we can deduce TK1[l], TK2[l]. Therefore, we have 22×7×4=56 possible

values for these 14 nibbles. Moreover, the knowledge of TK1[e],TK2[e], where e = 13, 14, 15

allows us to deduce the values of ETK2[7, 10, 13], and the knowledge of of TK1[10],TK2[10]

allows us to deduce the value of TK15[2]. In addition, we have 24 possible values for the

nibble TK19[1]. Therefore, we have 256+4=60 possible values for the 19 tweakey nibbles that

are involved in rounds 2, 15, 17, 19.

147

For the tweakey nibbles TK16[t] and TK18[f], the following relations hold:

TK16[t][0] = TK1[l][0]⊕TK2[l]{0, 1, 2} TK18[f][0] = TK1[l][0]⊕TK2[l]{0, 1, 2, 3}

TK16[t][1] = TK1[l][1]⊕TK2[l]{1, 2, 3} TK18[f][1] = TK1[l][1]⊕TK2[l]{0, 1, 2}

TK16[t][2] = TK1[l][2]⊕TK2[l]{0, 2} TK18[f][2] = TK1[l][2]⊕TK2[l]{1, 2, 3}

TK16[t][3] = TK1[l][3]⊕TK2[l]{1, 3} TK18[f][3] = TK1[l][3]⊕TK2[l]{0, 2},

where t = 0, 1, 2, f = 2, 0, 4 and l = 0, 1, 2, respectively. From the above relations we can

deduce TK1[l], TK2[l]. Therefore, we have 22×3×4=24 possible values for these 6 nibbles. More-

over, the knowledge of TK1[l],TK2[l] allows us to deduce the values of ETK1[1, 4, 5, 6, 14].

Hence, we have 224 possible values for the 10 tweakey nibbles that are involved in rounds 1,

16, 18.

For the tweakey nibbles ETK1[t] and TK18[f] , the following relations hold:

ETK1[t][0] = TK1[l][0]⊕ TK2[l]{0} TK18[f][0] = TK1[l][0]⊕ TK2[l]{0, 1, 2, 3}

ETK1[t][1] = TK1[l][1]⊕ TK2[l]{1} TK18[f][1] = TK1[l][1]⊕ TK2[l]{0, 1, 2}

ETK1[t][2] = TK1[l][2]⊕ TK2[l]{2} TK18[f][2] = TK1[l][2]⊕ TK2[l]{1, 2, 3}

ETK1[t][3] = TK1[l][3]⊕ TK2[l]{3} TK18[f][3] = TK1[l][3]⊕ TK2[l]{0, 2},

where t = 3, 9, 11, f = 7, 6, 5 and l = 3, 4, 6, respectively. From the above relations we

can deduce TK1[l], TK2[l]. Moreover, the knowledge of TK1[6],TK2[6] allows us to deduce

the values of TK16[6] Therefore, we have 22×3×4=24 possible values for these 7 nibbles. In

addition, we have 28 possible values of TK18[1, 3]. Hence, we have 224+8=32 possible values

for the 9 tweakey nibbles that are involved in rounds 1, 16, 18.

Table A.1: SKINNY-64-128 tweakey relations for round i = 15, 16, · · · , 19 (Lh
1 = P h

T , L
h
2 =

(LFSR ◦ PT)
h)

Round i = 15, TKi[j, j = 0 : 7] =L8

1
(TK1[l]) ⊕ L8

2
(TK2[l]), l = 8, 9, 10, 11, 12, 13, 14, 15

and Round i = 16, TKi[j, j = 0 : 7] =L8

1
(TK1[l]) ⊕ L8

2
(TK2[l]), l = 0, 1, 2, 3, 4, 5, 6, 7

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 1, 2} TK1[l][1] ⊕ TK2[l]{1, 2, 3} TK1[l][2] ⊕ TK2[l]{0, 2} TK1[l][3] ⊕ TK2[l]{1, 3}

Round i = 17, TKi[j, j = 0 : 7] =L9

1
(TK1[l]) ⊕ L9

2
(TK2[l]), l = 9, 15, 8, 13, 10, 14, 12, 11

and Round i = 18, TKi[j, j = 0 : 7] =L9

1
(TK1[l]) ⊕ L9

2
(TK2[l]), l = 1, 7, 0, 5, 2, 6, 4, 3

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 1, 2, 3} TK1[l][1] ⊕ TK2[l]{0, 1, 2} TK1[l][2] ⊕ TK2[l]{1, 2, 3} TK1[l][3] ⊕ TK2[l]{0, 2}

Round i = 19, TKi[j, j = 0 : 7] =L10

1
(TK1[l]) ⊕ L10

2
(TK2[l]), l = 15, 11, 9, 14, 8, 12, 10, 13

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 1, 3} TK1[l][1] ⊕ TK2[l]{0, 1, 2, 3} TK1[l][2] ⊕ TK2[l]{0, 1, 2} TK1[l][3] ⊕ TK2[l]{1, 2, 3}

148

Table A.2: SKINNY-64-128 equivlant tweakey relations for round i = 1, 2 (Lh
1 = P h

T , L
h
2 =

(LFSR ◦ PT)
h)

Round i = 1, ETKi[j, j = 0 : 15] =TK1[l] ⊕ TK2[l],l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0] ⊕ TK2[l][0] TK1[l][1] ⊕ TK2[l][1] TK1[l][2] ⊕ TK2[l][2] TK1[l][3] ⊕ TK2[l][3]

Round i = 2, ETKi[j, j = 0 : 15] =L1(TK1[l]) ⊕ L2(TK2[l]), l = 9, 15, 8, 13, 9, 15, 8, 13,11, 10, 14, 12, 9, 15, 8, 13

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0] ⊕ TK2[l]{2, 3} TK1[l][1] ⊕ TK2[l][0] TK1[l][2] ⊕ TK2[l][1] TK1[l][3] ⊕ TK2[l][2]

149

Appendix B

SKINNY-128-256 Key Schedule

Relations

Tables B.1, B.2 illustrate the tweakey and equivalent tweakey relations, respectively.

Table B.1: SKINNY-128-256 tweakey relations for round i = 15, 16, · · · , 19 (Lh
1 = P h

T , L
h
2 =

(LFSR ◦ PT)
h)

Round i = 15, TKi[j, j = 0 : 7] =L8

1
(TK1[l]) ⊕ L8

2
(TK2[l]), l = 8, 9, 10, 11, 12, 13, 14, 15

and Round i = 16, TKi[j, j = 0 : 7] =L8

1
(TK1[l]) ⊕ L8

2
(TK2[l]), l = 0, 1, 2, 3, 4, 5, 6, 7

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 4, 6} TK1[l][1] ⊕ TK2[l]{1, 5, 7} TK1[l][2] ⊕ TK2[l]{0, 2} TK1[l][3] ⊕ TK2[l]{1,3}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4] ⊕ TK2[l]{2, 4} TK1[l][5] ⊕ TK2[l]{3, 5} TK1[l][6] ⊕ TK2[l]{4, 6} TK1[l][7] ⊕ TK2[l]{5,7}

Round i = 17, TKi[j, j = 0 : 7] =L9

1
(TK1[l]) ⊕ L9

2
(TK2[l]), l = 9, 15, 8, 13, 10, 14, 12, 11

and Round i = 18, TKi[j, j = 0 : 7] =L9

1
(TK1[l]) ⊕ L9

2
(TK2[l]), l = 1, 7, 0, 5, 2, 6, 4, 3

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{3, 7} TK1[l][1] ⊕ TK2[l]{0, 4, 6} TK1[l][2] ⊕ TK2[l]{1, 5, 7} TK1[l][3] ⊕ TK2[l]{0,2}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4] ⊕ TK2[l]{1, 3} TK1[l][5] ⊕ TK2[l]{2, 4} TK1[l][6] ⊕ TK2[l]{3, 5} TK1[l][7] ⊕ TK2[l]{4,6}

Round i = 19, TKi[j, j = 0 : 7] =L10

1
(TK1[l]) ⊕ L10

2
(TK2[l]), l = 15, 11, 9, 14, 8, 12, 10, 13

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{2, 6} TK1[l][1] ⊕ TK2[l]{3, 7} TK1[l][2] ⊕ TK2[l]{0, 4, 6} TK1[l][3] ⊕ TK2[l]{1,5, 7}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4] ⊕ TK2[l]{0, 2} TK1[l][5] ⊕ TK2[l]{1, 3} TK1[l][6] ⊕ TK2[l]{2, 4} TK1[l][7] ⊕ TK2[l]{3,5}

150

Table B.2: SKINNY-128-256 equivlant tweakey relations for round i = 1, 2 (Lh
1 = P h

T , L
h
2 =

(LFSR ◦ PT)
h)

Round i = 1, ETKi[j, j = 0 : 15] =TK1[l] ⊕ TK2[l],l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0] ⊕ TK2[l][0] TK1[l][1] ⊕ TK2[l][1] TK1[l][2] ⊕ TK2[l][2] TK1[l][3] ⊕ TK2[l][3]

ETKi[j][4] ETKi[j][5] ETKi[j][6] ETKi[j][7]

TK1[l][4] ⊕ TK2[l][4] TK1[l][5] ⊕ TK2[l][5] TK1[l][6] ⊕ TK2[l][6] TK1[l][7] ⊕ TK2[l][7]

Round i = 2, ETKi[j, j = 0 : 15] =L1(TK1[l]) ⊕ L2(TK2[l]), l = 9, 15, 8, 13, 9, 15, 8, 13,11, 10, 14, 12, 9, 15, 8, 13

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0] ⊕ TK2[l]{5, 7} TK1[l][1] ⊕ TK2[l][0] TK1[l][2] ⊕ TK2[l][1] TK1[l][3] ⊕ TK2[l][2]

ETKi[j][4] ETKi[j][5] ETKi[j][6] ETKi[j][7]

TK1[l][4] ⊕ TK2[l][3] TK1[l][5] ⊕ TK2[l][4] TK1[l][6] ⊕ TK2[l][5] TK1[l][7] ⊕ TK2[l][6]

151

Appendix C

SKINNY-64-64/SKINNY-128-128

Key Schedule Relations

Tables C.1, C.2 illustrate the tweakey and equivalent tweakey relations, respectively.

Table C.1: SKINNY-64-64 and SKINNY-128-128 tweakey relations for round i = 15, 16, 17

Round i = 15 TKi[j, j = 0 : 7] =TK1[l], l = 8, 9, 10, 11, 12, 13, 14, 15

Round i = 16 TKi[j, j = 0 : 7] =TK1[l], l = 0, 1, 2, 3, 4, 5, 6, 7

Round i = 17 TKi[j, j = 0 : 7] =TK1[l], l = 9, 15, 8, 13, 10, 14, 12, 11

Table C.2: SKINNY-64-64 and SKINNY-128-128 equivlant tweakey relations for round i =
1, 2

Round i = 1 ETKi[j, j = 0 : 15] =TK1[l], l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

Round i = 2 ETKi[j, j = 0 : 15] =TK1[l], l = 9, 15, 8, 13, 9, 15, 8, 13,11, 10, 14, 12, 9, 15, 8, 13

152

Appendix D

SKINNY-64-192/SKINNY-128-384

Key Schedule Relations

Tables D.1, D.2 (resp. D.3, D.4) illustrate the tweakey and equivalent tweakey relations of

SKINNY-64-192 (resp. SKINNY-128-384).

Table D.1: SKINNY-64-192 tweakey relations for round i = 15, 16, · · · , 21 (Lh
1 = P h

T , L
h
2 =

(LFSR ◦ PT)
h)

Round i = 15, TKi[j, j = 0 : 7] =L8

1
(TK1[l]) ⊕ L8

2
(TK2[l]) ⊕ L8

2
(TK3[l]), l = 8, 9, 10, 11, 12, 13, 14, 15

and Round i = 16, TKi[j, j = 0 : 7] =L8

1
(TK1[l]) ⊕ L8

2
(TK2[l]) ⊕ L8

2
(TK3[l]), l = 0, 1, 2, 3, 4, 5, 6, 7

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 1, 2}
⊕TK3[l]{1, 2, 3}

TK1[l][1] ⊕ TK2[l]{1, 2, 3}
⊕TK3[l]{0, 2}

TK1[l][2] ⊕ TK2[l]{0, 2}
⊕TK3[l]{1, 3}

TK1[l][3] ⊕ TK2[l]{1, 3}
⊕TK3[l]{0, 2, 3}

Round i = 17, TKi[j, j = 0 : 7] =L9

1
(TK1[l]) ⊕ L9

2
(TK2[l]) ⊕ L9

2
(TK3[l]), l = 9, 15, 8, 13, 10, 14, 12, 11

and Round i = 18, TKi[j, j = 0 : 7] =L9

1
(TK1[l]) ⊕ L9

2
(TK2[l]) ⊕ L9

2
(TK3[l]), l = 1, 7, 0, 5, 2, 6, 4, 3

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 1, 2, 3}
⊕TK3[l]{0, 2}

TK1[l][1] ⊕ TK2[l]{0, 1, 2}
⊕TK3[l]{1, 3}

TK1[l][2] ⊕ TK2[l]{1, 2, 3}
⊕TK3[l]{0, 2, 3}

TK1[l][3] ⊕ TK2[l]{0, 2}
⊕TK3[l]{0, 1}

Round i = 19, TKi[j, j = 0 : 7] =L10

1
(TK1[l]) ⊕ L10

2
(TK2[l]) ⊕ L10

2
(TK3[l]), l = 15, 11, 9, 14, 8, 12, 10, 13

and Round i = 20, TKi[j, j = 0 : 7] =L10

1
(TK1[l]) ⊕ L10

2
(TK2[l]) ⊕ L10

2
(TK3[l]), l = 7, 3, 1, 6, 0, 4, 2, 5

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 1, 3}
⊕TK3[l]{1, 3}

TK1[l][1] ⊕ TK2[l]{0, 1, 2, 3}
⊕TK3[l]{0, 2, 3}

TK1[l][2] ⊕ TK2[l]{0, 1, 2}
⊕TK3[l]{0, 1}

TK1[l][3] ⊕ TK2[l]{1, 2, 3}
⊕TK3[l]{1, 2}

Round i = 21, TKi[j, j = 0 : 7] =L11

1
(TK1[l]) ⊕ L11

2
(TK2[l]) ⊕ L11

2
(TK3[l]), l = 11, 13, 15, 12, 9, 10, 8, 14

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 3}
⊕TK3[l]{0, 2, 3}

TK1[l][1] ⊕ TK2[l]{0, 1, 3}
⊕TK3[l]{0, 1}

TK1[l][2] ⊕ TK2[l]{0, 1, 2, 3}
⊕TK3[l]{1, 2}

TK1[l][3] ⊕ TK2[l]{0, 1, 2}
⊕TK3[l]{2, 3}

153

Table D.2: SKINNY-64-192 equivlant tweakey relations for round i = 1, 2 (Lh
1 = P h

T , L
h
2 =

(LFSR ◦ PT)
h)

Round i = 1, ETKi[j, j = 0 : 15] =TK1[l] ⊕ TK2[l] ⊕ TK3[l],l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0] ⊕ TK2[l][0]
⊕TK3[l][0]

TK1[l][1] ⊕ TK2[l][1]
⊕TK3[l][1]

TK1[l][2] ⊕ TK2[l][2]
⊕TK3[l][2]

TK1[l][3] ⊕ TK2[l][3]
⊕TK3[l][3]

Round i = 2, ETKi[j, j = 0 : 15] =L1(TK1[l]) ⊕ L2(TK2[l]) ⊕ L2(TK3[l]), l = 9, 15, 8, 13, 9, 15, 8, 13,
11, 10, 14, 12, 9, 15, 8, 13

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0] ⊕ TK2[l]{2, 3}
⊕TK3[l]{1}

TK1[l][1] ⊕ TK2[l][0]
⊕TK3[l]{2}

TK1[l][2] ⊕ TK2[l][1]
⊕TK3[l]{3}

TK1[l][3] ⊕ TK2[l][2]
⊕TK3[l]{0, 3}

Table D.3: SKINNY-128-384 tweakey relations for round i = 15, 16, · · · , 21 (Lh
1 = P h

T , L
h
2 =

(LFSR ◦ PT)
h)

Round i = 15, TKi[j, j = 0 : 7] =L8

1
(TK1[l]) ⊕ L8

2
(TK2[l]) ⊕ L8

2
(TK3[l]), l = 8, 9, 10, 11, 12, 13, 14, 15

and Round i = 16, TKi[j, j = 0 : 7] =L8

1
(TK1[l]) ⊕ L8

2
(TK2[l]) ⊕ L8

2
(TK3[l]), l = 0, 1, 2, 3, 4, 5, 6, 7

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{0, 4, 6}
TK3[l]{0, 6}

TK1[l][1] ⊕ TK2[l]{1, 5, 7}
TK3[l]{1, 7}

TK1[l][2] ⊕ TK2[l]{0, 2}
TK3[l]{0, 2, 6}

TK1[l][3] ⊕ TK2[l]{1,3}
TK3[l]{1, 3, 7}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4] ⊕ TK2[l]{2, 4}
TK3[l]{0, 2, 4, 6}

TK1[l][5] ⊕ TK2[l]{3, 5}
TK3[l]{1, 3, 5, 7}

TK1[l][6] ⊕ TK2[l]{4, 6}
TK3[l]{0, 2, 4}

TK1[l][7] ⊕ TK2[l]{5,7}
TK3[l]{1, 3, 5}

Round i = 17, TKi[j, j = 0 : 7] =L9

1
(TK1[l]) ⊕ L9

2
(TK2[l]) ⊕ L9

2
(TK3[l]), l = 9, 15, 8, 13, 10, 14, 12, 11

and Round i = 18, TKi[j, j = 0 : 7] =L9

1
(TK1[l]) ⊕ L9

2
(TK2[l]) ⊕ L9

2
(TK3[l]), l = 1, 7, 0, 5, 2, 6, 4, 3

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{3, 7}
TK3[l]{1, 7}

TK1[l][1] ⊕ TK2[l]{0, 4, 6}
TK3[l]{0, 2, 6}

TK1[l][2] ⊕ TK2[l]{1, 5, 7}
TK3[l]{1, 3, 7}

TK1[l][3] ⊕ TK2[l]{0,2}
TK3[l]{0, 2, 4, 6}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4] ⊕ TK2[l]{1, 3}
TK3[l]{1, 3, 5, 7}

TK1[l][5] ⊕ TK2[l]{2, 4}
TK3[l]{0, 2, 4}

TK1[l][6] ⊕ TK2[l]{3, 5}
TK3[l]{1, 3, 5}

TK1[l][7] ⊕ TK2[l]{4,6}
TK3[l]{2, 4, 6}

Round i = 19, TKi[j, j = 0 : 7] =L10

1
(TK1[l]) ⊕ L10

2
(TK2[l]) ⊕ L10

2
(TK3[l]), l = 15, 11, 9, 14, 8, 12, 10, 13

and Round i = 20, TKi[j, j = 0 : 7] =L10

1
(TK1[l]) ⊕ L10

2
(TK2[l]) ⊕ L10

2
(TK3[l]), l = 7, 3, 1, 6, 0, 4, 2, 5

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{2, 6}
TK3[l]{0, 2, 6}

TK1[l][1] ⊕ TK2[l]{3, 7}
TK3[l]{1, 3, 7}

TK1[l][2] ⊕ TK2[l]{0, 4, 6}
TK3[l]{0, 2, 4, 6}

TK1[l][3] ⊕ TK2[l]{1,5, 7}
TK3[l]{1, 3, 5, 7}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4] ⊕ TK2[l]{0, 2}
TK3[l]{0, 2, 4}

TK1[l][5] ⊕ TK2[l]{1, 3}
TK3[l]{1, 3, 5}

TK1[l][6] ⊕ TK2[l]{2, 4}
TK3[l]{2, 4, 6}

TK1[l][7] ⊕ TK2[l]{3,5}
TK3[l]{3, 5, 7}

Round i = 21, TKi[j, j = 0 : 7] =L11

1
(TK1[l]) ⊕ L11

2
(TK2[l]) ⊕ L11

2
(TK3[l]), l = 11, 13, 15, 12, 9, 10, 8, 14

TKi[j][0] TKi[j][1] TKi[j][2] TKi[j][3]

TK1[l][0] ⊕ TK2[l]{1, 5}
TK3[l]{1, 3, 7}

TK1[l][1] ⊕ TK2[l]{2, 6}
TK3[l]{0, 2, 4, 6}

TK1[l][2] ⊕ TK2[l]{3, 7}
TK3[l]{1, 3, 5, 7}

TK1[l][3] ⊕ TK2[l]{0,4, 6}
TK3[l]{0, 2, 4}

TKi[j][4] TKi[j][5] TKi[j][6] TKi[j][7]

TK1[l][4] ⊕ TK2[l]{1, 5, 7}
TK3[l]{1, 3, 5}

TK1[l][5] ⊕ TK2[l]{0, 2}
TK3[l]{2, 4, 6}

TK1[l][6] ⊕ TK2[l]{1, 3}
TK3[l]{3, 5, 7}

TK1[l][7] ⊕ TK2[l]{2,4}
TK3[l]{0, 4}

154

Table D.4: SKINNY-128-384 equivlant tweakey relations for round i = 1, 2 (Lh
1 = P h

T , L
h
2 =

(LFSR ◦ PT)
h)

Round i = 1, ETKi[j, j = 0 : 15] =TK1[l] ⊕ TK2[l] ⊕ TK3[l],l = 0, 1, 2, 3, 0, 1, 2, 3,7, 4, 5, 6, 0, 1, 2, 3

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0] ⊕ TK2[l][0]
⊕TK3[l][0]

TK1[l][1] ⊕ TK2[l][1]
⊕TK3[l][1]

TK1[l][2] ⊕ TK2[l][2]
⊕TK3[l][2]

TK1[l][3] ⊕ TK2[l][3]
⊕TK3[l][3]

ETKi[j][4] ETKi[j][5] ETKi[j][6] ETKi[j][7]

TK1[l][4] ⊕ TK2[l][4]
⊕TK3[l][4]

TK1[l][5] ⊕ TK2[l][5]
⊕TK3[l][5]

TK1[l][6] ⊕ TK2[l][6]
⊕TK3[l][6]

TK1[l][7] ⊕ TK2[l][7]
⊕TK3[l][7]

Round i = 2, ETKi[j, j = 0 : 15] =L1(TK1[l]) ⊕ L2(TK2[l]) ⊕ L2(TK3[l]), l = 9, 15, 8, 13, 9, 15, 8, 13,
11, 10, 14, 12, 9, 15, 8, 13

ETKi[j][0] ETKi[j][1] ETKi[j][2] ETKi[j][3]

TK1[l][0] ⊕ TK2[l]{5, 7}
⊕TK3[l][1]

TK1[l][1] ⊕ TK2[l][0]
⊕TK3[l][2]

TK1[l][2] ⊕ TK2[l][1]
⊕TK3[l][3]

TK1[l][3] ⊕ TK2[l][2]
⊕TK3[l][4]

ETKi[j][4] ETKi[j][5] ETKi[j][6] ETKi[j][7]

TK1[l][4] ⊕ TK2[l][3]
⊕TK3[l][5]

TK1[l][5] ⊕ TK2[l][4]
⊕TK3[l][6]

TK1[l][6] ⊕ TK2[l][5]
⊕TK3[l][7]

TK1[l][7] ⊕ TK2[l][6]
⊕TK3[l]{0, 6}

155

Appendix E

Chosen Plaintext MitM Attack on

5-round Kuznyechik

The authors in [14] implied that their attack can only work in the chosen ciphertext model.

In this appendix, we show how we can tweak their attack to work in the plaintext model.

Figure E.1 illustrates our 3-round distinguisher which starts at x1 and ends at y4. The δ-set

is chosen at byte 15 and the multiset is computed at byte 15. Our distinguisher is based on

the following proposition:

Proposition 11 If a message m belongs to a pair of states conforming to the truncated

differential characteristic of Figure E.1, then the multiset of differences ∆y4[15] obtained

from the δ-set constructed from m in x1[15] is fully determined by the following 19 bytes:

∆x1[15], x2, y4[15] and ∆y4[15].

Proposition 11 can be proved using the same approach used to prove Proposition 10.

Offline Phase. In this phase, we compute the multiset at y4[15] using the 19 byte parame-

ters mentioned in Proposition 11, i.e., we have 219×8 = 2152 multiset out of 2467.6 theoretically

possible ones.

Data Collection. The probability of the truncated differential characteristic can be eval-

uated as follows: transition from z4 to y4 over L−1 (16 → 1) of probability 2−15×8 = 2−120.

Therefore, we need to collect 2120 message pairs to guarantee that there exist one message

pair which conform to the truncated path. We use the same structure that is used in the

6-round attack. Hence, we need to query 2113 chosen plaintext.

Key Recovery. In order to build the δ-set and compute the multiset, we need to guess

K6. The key suggestions for the 16 bytes K6 can be obtained by guessing ∆y4[15]. There-

fore, we have 28 values for the 16 bytes key K6.

156

�����

�

���¡�

�

���¢�

�

���£�

�

���¤�

�

���¥�

¦

§�

¨�

©�

§¡

¨¡

©¡

§¢

¨¢

©¢

§£

¨£

©£

§¤

¨¤

©¤

ª

«¬®¬¯°±¬²³´

Figure E.1: Kuznyechik 5-round attack

The probability of finding a match in the table with the wrong key is 2152/2467.6 = 2−315.6.

Therefore, the number of key candidates of K6 after launching the attack is 2120+8−315.6 =

2−187.6, i.e., our attack will find one right value for K6. Then, the master key can be recovered

by guessing K5 using two plaintext/ciphertext pairs.

Attack complexity. The memory complexity is 2152 × 512/128 = 2154 128-bit. The data

complexity is 2113 chosen plaintext. The time complexity is 219×8 × 28 × 3/5 + 2120 × 28 ×

28× 2/5+ 2× 2128 ≈ 2159.3 +2134.7+2129 ≈ 2159.3 encryptions. Our attack has an online time

complexity of 2134.7 encryptions. Therefore, this attack reduces the online time complexity of

the previous attack [14] by a factor of 25.6 with the same data and a non significant increase

in the memory complexity.

157

Appendix F

Key Schedule Relations for

SPARX-128/128

�µ
¶µ

�·
¶µ

�¶
¶µ

�¸
¶µ

�¹
¶µ

�º
¶µ

�»
¶µ

�¼
¶µ

�

���

��½·¾¶µ¿ ��½·¾¶·¿ ��½·¾¶¶¿

�

��½·¾¶¸¿

��½µ¾¶µ¿À�µ
¶µ

��½µ¾¶·¿À�·
¶µ

��½µ¾¶¶¿À�¶
¶µ

��½µ¾¶¸¿À�¸
¶µ

�

���

��½¶¾¶µ¿ ��½¶¾¶·¿ ��½¶¾¶¶¿

�

��½¶¾¶¸¿

�

���

��½¸¾¶µ¿ ��½¸¾¶·¿ ��½¸¾¶¶¿

�

��½¸¾¶¸¿

Figure F.1: Key secluded relations of SPARX-128/128

158

Appendix G

Zero-Correlation Distinguisher for

SPARX-64/128

�ÁÂÃÄÅ�ÁÂÃÄÅ �ÁÆÃÄÅ�ÁÆÃÄÅ

�
Ç

�È

�
Ç

�ÁÂÃÄÉÇÅ�ÁÂÃÄÉÇÅ �ÁÆÃÄÉÇÅ�ÁÆÃÄÉÇÅ

�
Ç

�È

�
Ç

�ÁÂÃÄÉÊÅ�ÁÂÃÄÉÊÅ �ÁÆÃÄÉÊÅ�ÁÆÃÄÉÊÅ

�
Ç

�È

�
Ç

�ÁÂÃÄÉËÅ�ÁÂÃÄÉËÅ �ÁÆÃÄÉËÅ�ÁÆÃÄÉËÅ

�
Ç

�È

�
Ç

�ÁÂÃÄÉÆÈÅ�ÁÂÃÄÉÆÈÅ �ÁÆÃÄÉÆÈÅ�ÁÆÃÄÉÆÈÅ

�Ì� �

�

�

��

�Í�

�Í�

� �Î�
�Î��Ï�

�Ï��Î�

β0 L2(β0)

L2(β0)L2(β0)β0 0

β1 0

0

0
0

0
β1

�����	
	�����

Figure G.1: A 12-round zero-correlation distinguisher of SPARX-64/128, where αi, βj are
32-bit non-zero linear masks and 0 denotes 0x0000 0x0000 linear mask

159

