27,991 research outputs found

    Airline crew scheduling

    Get PDF
    An airline must cover each flight leg with a full complement of cabin crew in a manner consistent with safety regulations and award requirements. Methods are investigated for solving the set partitioning and covering problem. A test example illustrates the problem and the use of heuristics. The Study Group achieved an understanding of the problem and a plan for further work

    Solving a robust airline crew pairing problem with column generation

    Get PDF
    In this study, we solve a robust version of the airline crew pairing problem. Our concept of robustness was partially shaped during our discussions with small local airlines in Turkey which may have to add a set of extra flights into their schedule at short notice during operation. Thus, robustness in this case is related to the ability of accommodating these extra flights at the time of operation by disrupting the original plans as minimally as possible. We focus on the crew pairing aspect of robustness and prescribe that the planned crew pairings incorporate a number of predefined recovery solutions for each potential extra flight. These solutions are implemented only if necessary for recovery purposes and involve either inserting an extra flight into an existing pairing or partially swapping the flights in two existing pairings in order to cover an extra flight. The resulting mathematical programming model follows the conventional set covering formulation of the airline crew pairing problem typically solved by column generation with an additional complication. The model includes constraints that depend on the columns due to the robustness consideration and grows not only column-wise but also row-wise as new columns are generated. To solve this dicult model, we propose a row and column generation approach. This approach requires a set of modifications to the multi-label shortest path problem for pricing out new columns (pairings) and various mechanisms to handle the simultaneous increase in the number of rows and columns in the restricted master problem during column generation. We conduct computational experiments on a set of real instances compiled from a local airline in Turkey

    Sub-Classifier Construction for Error Correcting Output Code Using Minimum Weight Perfect Matching

    Full text link
    Multi-class classification is mandatory for real world problems and one of promising techniques for multi-class classification is Error Correcting Output Code. We propose a method for constructing the Error Correcting Output Code to obtain the suitable combination of positive and negative classes encoded to represent binary classifiers. The minimum weight perfect matching algorithm is applied to find the optimal pairs of subset of classes by using the generalization performance as a weighting criterion. Based on our method, each subset of classes with positive and negative labels is appropriately combined for learning the binary classifiers. Experimental results show that our technique gives significantly higher performance compared to traditional methods including the dense random code and the sparse random code both in terms of accuracy and classification times. Moreover, our method requires significantly smaller number of binary classifiers while maintaining accuracy compared to the One-Versus-One.Comment: 7 pages, 3 figure

    Faster computation of the Tate pairing

    Get PDF
    This paper proposes new explicit formulas for the doubling and addition step in Miller's algorithm to compute the Tate pairing. For Edwards curves the formulas come from a new way of seeing the arithmetic. We state the first geometric interpretation of the group law on Edwards curves by presenting the functions which arise in the addition and doubling. Computing the coefficients of the functions and the sum or double of the points is faster than with all previously proposed formulas for pairings on Edwards curves. They are even competitive with all published formulas for pairing computation on Weierstrass curves. We also speed up pairing computation on Weierstrass curves in Jacobian coordinates. Finally, we present several examples of pairing-friendly Edwards curves.Comment: 15 pages, 2 figures. Final version accepted for publication in Journal of Number Theor
    corecore