40,522 research outputs found

    3D Imaging of Gems and Minerals by Multiphoton Microscopy

    Full text link
    Many optical approaches have been used to examine the composition and structure of gemstones, both recently and throughout history. The nonlinear optical behavior of different gemstones has not been investigated, and the higher order terms to the refractive index represent an unused tool for qualifying and examining a stone. We have used a multiphoton microscope to examine the nonlinear optical properties of 36 different gemstones and demonstrate that it is a useful tool for imaging them three-dimensionally up to the millimeter scale below the sample surface. The polarization dependence of second harmonic generation signals was used to examine the crystal orientations inside the minerals.Comment: 9 pages, five figure

    Inter-Firm Co-Operative Strategies In The Context Of Discontinuous Technological Change. The Case Of The Uk Optical Communications Systems Industry

    Get PDF
    At times of discontinuous technological change co-operation representsa viable strategy for both incumbents and new-entrants, provided thatthe choice of co-operation is consistent with the firm's businessstrategy (market-pull vs. technology-push) and with its degree oforganizational and technological flexibility. Evidence from the UKfibre-optics industry identifies two ideal-types of co-operation,namely structured co-operation - associated with market-pullstrategies and lower levels of flexibility - and unstructuredco-operation - associated with technology-push strategies and higherlevels of flexibility.co-operative strategy;incumbents;inter-firm relationships;new-entrants;technological discontinuity

    Gravitational lensing: a unique probe of dark matter and dark energy

    Get PDF
    I review the development of gravitational lensing as a powerful tool of the observational cosmologist. After the historic eclipse expedition organized by Arthur Eddington and Frank Dyson, the subject lay observationally dormant for 60 years. However, subsequent progress has been astonishingly rapid, especially in the past decade, so that gravitational lensing now holds the key to unravelling the two most profound mysteries of our Universe—the nature and distribution of dark matter, and the origin of the puzzling cosmic acceleration first identified in the late 1990s. In this non-specialist review, I focus on the unusual history and achievements of gravitational lensing and its future observational prospects

    Microscopy with ultraviolet surface excitation for rapid slide-free histology.

    Get PDF
    Histologic examination of tissues is central to the diagnosis and management of neoplasms and many other diseases, and is a foundational technique for preclinical and basic research. However, commonly used bright-field microscopy requires prior preparation of micrometre-thick tissue sections mounted on glass slides, a process that can require hours or days, that contributes to cost, and that delays access to critical information. Here, we introduce a simple, non-destructive slide-free technique that within minutes provides high-resolution diagnostic histological images resembling those obtained from conventional haematoxylin-and-eosin-histology. The approach, which we named microscopy with ultraviolet surface excitation (MUSE), can also generate shape and colour-contrast information. MUSE relies on ~280-nm ultraviolet light to restrict the excitation of conventional fluorescent stains to tissue surfaces, and it has no significant effects on downstream molecular assays (including fluorescence in situ hybridization and RNA-seq). MUSE promises to improve the speed and efficiency of patient care in both state-of-the-art and low-resource settings, and to provide opportunities for rapid histology in research

    Mid-Infrared Instrumentation for the European Extremely Large Telescope

    Full text link
    MIDIR is the proposed thermal/mid-IR imager and spectrograph for the European Extremely Large Telescope (E-ELT). It will cover the wavelength range of 3 to at least 20 microns. Designed for diffraction-limited performance over the entire wavelength range, MIDIR will require an adaptive optics system; a cryogenically cooled system could offer optimal performance in the IR, and this is a critical aspect of the instrument design. We present here an overview of the project, including a discussion of MIDIR's science goals and a comparison with other infrared (IR) facilities planned in the next decade; top level requirements derived from these goals are outlined. We describe the optical and mechanical design work carried out in the context of a conceptual design study, and discuss some important issues to emerge from this work, related to the design, operation and calibration of the instrument. The impact of telescope optical design choices on the requirements for the MIDIR instrument is demonstrated.Comment: for publication in SPIE Proceedings vol. 6692, Cryogenic Optical Systems and Instrumentation XII, eds. J.B. Heaney and L.G. Burriesci, San Diego, Aug 200

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Wavefront image sensor chip

    Get PDF
    We report the implementation of an image sensor chip, termed wavefront image sensor chip (WIS), that can measure both intensity/amplitude and phase front variations of a light wave separately and quantitatively. By monitoring the tightly confined transmitted light spots through a circular aperture grid in a high Fresnel number regime, we can measure both intensity and phase front variations with a high sampling density (11 ”m) and high sensitivity (the sensitivity of normalized phase gradient measurement is 0.1 mrad under the typical working condition). By using WIS in a standard microscope, we can collect both bright-field (transmitted light intensity) and normalized phase gradient images. Our experiments further demonstrate that the normalized phase gradient images of polystyrene microspheres, unstained and stained starfish embryos, and strongly birefringent potato starch granules are improved versions of their corresponding differential interference contrast (DIC) microscope images in that they are artifact-free and quantitative. Besides phase microscopy, WIS can benefit machine recognition, object ranging, and texture assessment for a variety of applications
    • 

    corecore