5 research outputs found

    Constructing Optimal Authentication Codes with Perfect Multi-fold Secrecy

    Full text link
    We establish a construction of optimal authentication codes achieving perfect multi-fold secrecy by means of combinatorial designs. This continues the author's work (ISIT 2009) and answers an open question posed therein. As an application, we present the first infinite class of optimal codes that provide two-fold security against spoofing attacks and at the same time perfect two- fold secrecy.Comment: 4 pages (double-column); to appear in Proc. 2010 International Zurich Seminar on Communications (IZS 2010, Zurich

    Combinatorial Bounds and Characterizations of Splitting Authentication Codes

    Full text link
    We present several generalizations of results for splitting authentication codes by studying the aspect of multi-fold security. As the two primary results, we prove a combinatorial lower bound on the number of encoding rules and a combinatorial characterization of optimal splitting authentication codes that are multi-fold secure against spoofing attacks. The characterization is based on a new type of combinatorial designs, which we introduce and for which basic necessary conditions are given regarding their existence.Comment: 13 pages; to appear in "Cryptography and Communications

    Authentication and Secrecy Codes for Equiprobable Source Probability Distributions

    Full text link
    We give new combinatorial constructions for codes providing authentication and secrecy for equiprobable source probability distributions. In particular, we construct an infinite class of optimal authentication codes which are multiple-fold secure against spoofing and simultaneously achieve perfect secrecy. Several further new optimal codes satisfying these properties will also be constructed and presented in general tables. Almost all of these appear to be the first authentication codes with these properties.Comment: 5 pages (double-column); to appear in Proc. IEEE International Symposium on Information Theory (ISIT 2009, Seoul, South Korea

    Perfect Secrecy Systems Immune to Spoofing Attacks

    Full text link
    We present novel perfect secrecy systems that provide immunity to spoofing attacks under equiprobable source probability distributions. On the theoretical side, relying on an existence result for tt-designs by Teirlinck, our construction method constructively generates systems that can reach an arbitrary high level of security. On the practical side, we obtain, via cyclic difference families, very efficient constructions of new optimal systems that are onefold secure against spoofing. Moreover, we construct, by means of tt-designs for large values of tt, the first near-optimal systems that are 5- and 6-fold secure as well as further systems with a feasible number of keys that are 7-fold secure against spoofing. We apply our results furthermore to a recently extended authentication model, where the opponent has access to a verification oracle. We obtain this way novel perfect secrecy systems with immunity to spoofing in the verification oracle model.Comment: 10 pages (double-column); to appear in "International Journal of Information Security
    corecore