995 research outputs found

    An incremental input-to-state stability condition for a generic class of recurrent neural networks

    Full text link
    This paper proposes a novel sufficient condition for the incremental input-to-state stability of a generic class of recurrent neural networks (RNNs). The established condition is compared with others available in the literature, showing to be less conservative. Moreover, it can be applied for the design of incremental input-to-state stable RNN-based control systems, resulting in a linear matrix inequality constraint for some specific RNN architectures. The formulation of nonlinear observers for the considered system class, as well as the design of control schemes with explicit integral action, are also investigated. The theoretical results are validated through simulation on a referenced nonlinear system

    Information-based Analysis and Control of Recurrent Linear Networks and Recurrent Networks with Sigmoidal Nonlinearities

    Get PDF
    Linear dynamical models have served as an analytically tractable approximation for a variety of natural and engineered systems. Recently, such models have been used to describe high-level diffusive interactions in the activation of complex networks, including those in the brain. In this regard, classical tools from control theory, including controllability analysis, have been used to assay the extent to which such networks might respond to their afferent inputs. However, for natural systems such as brain networks, it is not clear whether advantageous control properties necessarily correspond to useful functionality. That is, are systems that are highly controllable (according to certain metrics) also ones that are suited to computational goals such as representing, preserving and categorizing stimuli? This dissertation will introduce analysis methods that link the systems-theoretic properties of linear systems with informational measures that describe these functional characterizations. First, we assess sensitivity of a linear system to input orientation and novelty by deriving a measure of how networks translate input orientation differences into readable state trajectories. Next, we explore the implications of this novelty-sensitivity for endpoint-based input discrimination, wherein stimuli are decoded in terms of their induced representation in the state space. We develop a theoretical framework for the exploration of how networks utilize excess input energy to enhance orientation sensitivity (and thus enhanced discrimination ability). Next, we conduct a theoretical study to reveal how the background or default state of a network with linear dynamics allows it to best promote discrimination over a continuum of stimuli. Specifically, we derive a measure, based on the classical notion of a Fisher discriminant, quantifying the extent to which the state of a network encodes information about its afferent inputs. This measure provides an information value quantifying the knowablility of an input based on its projection onto the background state. We subsequently optimize this background state, and characterize both the optimal background and the inputs giving it rise. Finally, we extend this information-based network analysis to include networks with nonlinear dynamics--specifically, ones involving sigmoidal saturating functions. We employ a quasilinear approximation technique, novel here in terms of its multidimensionality and specific application, to approximate the nonlinear dynamics by scaling a corresponding linear system and biasing by an offset term. A Fisher information-based metric is derived for the quasilinear system, with analytical and numerical results showing that Fisher information is better for the quasilinear (hence sigmoidal) system than for an unconstrained linear system. Interestingly, this relation reverses when the noise is placed outside the sigmoid in the model, supporting conclusions extant in the literature that the relative alignment of the state and noise covariance is predictive of Fisher information. We show that there exists a clear trade-off between informational advantage, as conferred by the presence of sigmoidal nonlinearities, and speed of dynamics

    A Review on Deep Learning in Medical Image Reconstruction

    Full text link
    Medical imaging is crucial in modern clinics to guide the diagnosis and treatment of diseases. Medical image reconstruction is one of the most fundamental and important components of medical imaging, whose major objective is to acquire high-quality medical images for clinical usage at the minimal cost and risk to the patients. Mathematical models in medical image reconstruction or, more generally, image restoration in computer vision, have been playing a prominent role. Earlier mathematical models are mostly designed by human knowledge or hypothesis on the image to be reconstructed, and we shall call these models handcrafted models. Later, handcrafted plus data-driven modeling started to emerge which still mostly relies on human designs, while part of the model is learned from the observed data. More recently, as more data and computation resources are made available, deep learning based models (or deep models) pushed the data-driven modeling to the extreme where the models are mostly based on learning with minimal human designs. Both handcrafted and data-driven modeling have their own advantages and disadvantages. One of the major research trends in medical imaging is to combine handcrafted modeling with deep modeling so that we can enjoy benefits from both approaches. The major part of this article is to provide a conceptual review of some recent works on deep modeling from the unrolling dynamics viewpoint. This viewpoint stimulates new designs of neural network architectures with inspirations from optimization algorithms and numerical differential equations. Given the popularity of deep modeling, there are still vast remaining challenges in the field, as well as opportunities which we shall discuss at the end of this article.Comment: 31 pages, 6 figures. Survey pape

    Simulation of Turing machines with analytic discrete ODEs: FPTIME and FPSPACE over the reals characterised with discrete ordinary differential equations

    Full text link
    We prove that functions over the reals computable in polynomial time can be characterised using discrete ordinary differential equations (ODE), also known as finite differences. We also provide a characterisation of functions computable in polynomial space over the reals. In particular, this covers space complexity, while existing characterisations were only able to cover time complexity, and were restricted to functions over the integers. We prove furthermore that no artificial sign or test function is needed even for time complexity. At a technical level, this is obtained by proving that Turing machines can be simulated with analytic discrete ordinary differential equations. We believe this result opens the way to many applications, as it opens the possibility of programming with ODEs, with an underlying well-understood time and space complexity.Comment: arXiv admin note: text overlap with arXiv:2209.1340
    • …
    corecore