30 research outputs found

    Information Recovery from Pairwise Measurements

    Full text link
    A variety of information processing tasks in practice involve recovering nn objects from single-shot graph-based measurements, particularly those taken over the edges of some measurement graph G\mathcal{G}. This paper concerns the situation where each object takes value over a group of MM different values, and where one is interested to recover all these values based on observations of certain pairwise relations over G\mathcal{G}. The imperfection of measurements presents two major challenges for information recovery: 1) inaccuracy\textit{inaccuracy}: a (dominant) portion 1p1-p of measurements are corrupted; 2) incompleteness\textit{incompleteness}: a significant fraction of pairs are unobservable, i.e. G\mathcal{G} can be highly sparse. Under a natural random outlier model, we characterize the minimax recovery rate\textit{minimax recovery rate}, that is, the critical threshold of non-corruption rate pp below which exact information recovery is infeasible. This accommodates a very general class of pairwise relations. For various homogeneous random graph models (e.g. Erdos Renyi random graphs, random geometric graphs, small world graphs), the minimax recovery rate depends almost exclusively on the edge sparsity of the measurement graph G\mathcal{G} irrespective of other graphical metrics. This fundamental limit decays with the group size MM at a square root rate before entering a connectivity-limited regime. Under the Erdos Renyi random graph, a tractable combinatorial algorithm is proposed to approach the limit for large MM (M=nΩ(1)M=n^{\Omega(1)}), while order-optimal recovery is enabled by semidefinite programs in the small MM regime. The extended (and most updated) version of this work can be found at (http://arxiv.org/abs/1504.01369).Comment: This version is no longer updated -- please find the latest version at (arXiv:1504.01369

    A Solution for Multi-Alignment by Transformation Synchronisation

    Full text link
    The alignment of a set of objects by means of transformations plays an important role in computer vision. Whilst the case for only two objects can be solved globally, when multiple objects are considered usually iterative methods are used. In practice the iterative methods perform well if the relative transformations between any pair of objects are free of noise. However, if only noisy relative transformations are available (e.g. due to missing data or wrong correspondences) the iterative methods may fail. Based on the observation that the underlying noise-free transformations can be retrieved from the null space of a matrix that can directly be obtained from pairwise alignments, this paper presents a novel method for the synchronisation of pairwise transformations such that they are transitively consistent. Simulations demonstrate that for noisy transformations, a large proportion of missing data and even for wrong correspondence assignments the method delivers encouraging results.Comment: Accepted for CVPR 2015 (please cite CVPR version

    Multi-Image Semantic Matching by Mining Consistent Features

    Full text link
    This work proposes a multi-image matching method to estimate semantic correspondences across multiple images. In contrast to the previous methods that optimize all pairwise correspondences, the proposed method identifies and matches only a sparse set of reliable features in the image collection. In this way, the proposed method is able to prune nonrepeatable features and also highly scalable to handle thousands of images. We additionally propose a low-rank constraint to ensure the geometric consistency of feature correspondences over the whole image collection. Besides the competitive performance on multi-graph matching and semantic flow benchmarks, we also demonstrate the applicability of the proposed method for reconstructing object-class models and discovering object-class landmarks from images without using any annotation.Comment: CVPR 201

    Fast multi-image matching via density-based clustering

    Full text link
    We consider the problem of finding consistent matches across multiple images. Previous state-of-the-art solutions use constraints on cycles of matches together with convex optimization, leading to computationally intensive iterative algorithms. In this paper, we propose a clustering-based formulation. We first rigorously show its equivalence with the previous one, and then propose QuickMatch, a novel algorithm that identifies multi-image matches from a density function in feature space. We use the density to order the points in a tree, and then extract the matches by breaking this tree using feature distances and measures of distinctiveness. Our algorithm outperforms previous state-of-the-art methods (such as MatchALS) in accuracy, and it is significantly faster (up to 62 times faster on some bechmarks), and can scale to large datasets (with more than twenty thousands features).Accepted manuscriptSupporting documentatio

    Higher-order Projected Power Iterations for Scalable Multi-Matching

    Get PDF
    The matching of multiple objects (e.g. shapes or images) is a fundamental problem in vision and graphics. In order to robustly handle ambiguities, noise and repetitive patterns in challenging real-world settings, it is essential to take geometric consistency between points into account. Computationally, the multi-matching problem is difficult. It can be phrased as simultaneously solving multiple (NP-hard) quadratic assignment problems (QAPs) that are coupled via cycle-consistency constraints. The main limitations of existing multi-matching methods are that they either ignore geometric consistency and thus have limited robustness, or they are restricted to small-scale problems due to their (relatively) high computational cost. We address these shortcomings by introducing a Higher-order Projected Power Iteration method, which is (i) efficient and scales to tens of thousands of points, (ii) straightforward to implement, (iii) able to incorporate geometric consistency, (iv) guarantees cycle-consistent multi-matchings, and (iv) comes with theoretical convergence guarantees. Experimentally we show that our approach is superior to existing methods

    Joint Cuts and Matching of Partitions in One Graph

    Full text link
    As two fundamental problems, graph cuts and graph matching have been investigated over decades, resulting in vast literature in these two topics respectively. However the way of jointly applying and solving graph cuts and matching receives few attention. In this paper, we first formalize the problem of simultaneously cutting a graph into two partitions i.e. graph cuts and establishing their correspondence i.e. graph matching. Then we develop an optimization algorithm by updating matching and cutting alternatively, provided with theoretical analysis. The efficacy of our algorithm is verified on both synthetic dataset and real-world images containing similar regions or structures

    Robust Motion Segmentation from Pairwise Matches

    Full text link
    In this paper we address a classification problem that has not been considered before, namely motion segmentation given pairwise matches only. Our contribution to this unexplored task is a novel formulation of motion segmentation as a two-step process. First, motion segmentation is performed on image pairs independently. Secondly, we combine independent pairwise segmentation results in a robust way into the final globally consistent segmentation. Our approach is inspired by the success of averaging methods. We demonstrate in simulated as well as in real experiments that our method is very effective in reducing the errors in the pairwise motion segmentation and can cope with large number of mismatches
    corecore