6,550 research outputs found

    Numerical Computation of Weil-Peterson Geodesics in the Universal Teichm\"uller Space

    Full text link
    We propose an optimization algorithm for computing geodesics on the universal Teichm\"uller space T(1) in the Weil-Petersson (WPW P) metric. Another realization for T(1) is the space of planar shapes, modulo translation and scale, and thus our algorithm addresses a fundamental problem in computer vision: compute the distance between two given shapes. The identification of smooth shapes with elements on T(1) allows us to represent a shape as a diffeomorphism on S1S^1. Then given two diffeomorphisms on S1S^1 (i.e., two shapes we want connect with a flow), we formulate a discretized WPW P energy and the resulting problem is a boundary-value minimization problem. We numerically solve this problem, providing several examples of geodesic flow on the space of shapes, and verifying mathematical properties of T(1). Our algorithm is more general than the application here in the sense that it can be used to compute geodesics on any other Riemannian manifold.Comment: 21 pages, 11 figure

    Geodesics in Heat

    Full text link
    We introduce the heat method for computing the shortest geodesic distance to a specified subset (e.g., point or curve) of a given domain. The heat method is robust, efficient, and simple to implement since it is based on solving a pair of standard linear elliptic problems. The method represents a significant breakthrough in the practical computation of distance on a wide variety of geometric domains, since the resulting linear systems can be prefactored once and subsequently solved in near-linear time. In practice, distance can be updated via the heat method an order of magnitude faster than with state-of-the-art methods while maintaining a comparable level of accuracy. We provide numerical evidence that the method converges to the exact geodesic distance in the limit of refinement; we also explore smoothed approximations of distance suitable for applications where more regularity is required

    Geodesic boundary value problems with symmetry

    Full text link
    This paper shows how left and right actions of Lie groups on a manifold may be used to complement one another in a variational reformulation of optimal control problems equivalently as geodesic boundary value problems with symmetry. We prove an equivalence theorem to this effect and illustrate it with several examples. In finite-dimensions, we discuss geodesic flows on the Lie groups SO(3) and SE(3) under the left and right actions of their respective Lie algebras. In an infinite-dimensional example, we discuss optimal large-deformation matching of one closed curve to another embedded in the same plane. In the curve-matching example, the manifold \Emb(S^1, \mathbb{R}^2) comprises the space of closed curves S1S^1 embedded in the plane R2\mathbb{R}^2. The diffeomorphic left action \Diff(\mathbb{R}^2) deforms the curve by a smooth invertible time-dependent transformation of the coordinate system in which it is embedded, while leaving the parameterisation of the curve invariant. The diffeomorphic right action \Diff(S^1) corresponds to a smooth invertible reparameterisation of the S1S^1 domain coordinates of the curve. As we show, this right action unlocks an important degree of freedom for geodesically matching the curve shapes using an equivalent fixed boundary value problem, without being constrained to match corresponding points along the template and target curves at the endpoint in time.Comment: First version -- comments welcome

    Geodesic Warps by Conformal Mappings

    Full text link
    In recent years there has been considerable interest in methods for diffeomorphic warping of images, with applications e.g.\ in medical imaging and evolutionary biology. The original work generally cited is that of the evolutionary biologist D'Arcy Wentworth Thompson, who demonstrated warps to deform images of one species into another. However, unlike the deformations in modern methods, which are drawn from the full set of diffeomorphism, he deliberately chose lower-dimensional sets of transformations, such as planar conformal mappings. In this paper we study warps of such conformal mappings. The approach is to equip the infinite dimensional manifold of conformal embeddings with a Riemannian metric, and then use the corresponding geodesic equation in order to obtain diffeomorphic warps. After deriving the geodesic equation, a numerical discretisation method is developed. Several examples of geodesic warps are then given. We also show that the equation admits totally geodesic solutions corresponding to scaling and translation, but not to affine transformations

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows

    Singularities and Quantum Gravity

    Full text link
    Although there is general agreement that a removal of classical gravitational singularities is not only a crucial conceptual test of any approach to quantum gravity but also a prerequisite for any fundamental theory, the precise criteria for non-singular behavior are often unclear or controversial. Often, only special types of singularities such as the curvature singularities found in isotropic cosmological models are discussed and it is far from clear what this implies for the very general singularities that arise according to the singularity theorems of general relativity. In these lectures we present an overview of the current status of singularities in classical and quantum gravity, starting with a review and interpretation of the classical singularity theorems. This suggests possible routes for quantum gravity to evade the devastating conclusion of the theorems by different means, including modified dynamics or modified geometrical structures underlying quantum gravity. The latter is most clearly present in canonical quantizations which are discussed in more detail. Finally, the results are used to propose a general scheme of singularity removal, quantum hyperbolicity, to show cases where it is realized and to derive intuitive semiclassical pictures of cosmological bounces.Comment: 41 pages, lecture course at the XIIth Brazilian School on Cosmology and Gravitation, September 200
    • …
    corecore