885 research outputs found

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    A performance model of speculative prefetching in distributed information systems

    Full text link
    Previous studies in speculative prefetching focus on building and evaluating access models for the purpose of access prediction. This paper investigates a complementary area which has been largely ignored, that of performance modelling. We use improvement in access time as the performance metric, for which we derive a formula in terms of resource parameters (time available and time required for prefetching) and speculative parameters (probabilities for next access). The performance maximization problem is expressed as a stretch knapsack problem. We develop an algorithm to maximize the improvement in access time by solving the stretch knapsack problem, using theoretically proven apparatus to reduce the search space. Integration between speculative prefetching and caching is also investigated, albeit under the assumption of equal item sizes

    A Heuristic Algorithm for Resource Allocation/Reallocation Problem

    Get PDF
    This paper presents a 1-opt heuristic approach to solve resource allocation/reallocation problem which is known as 0/1 multichoice multidimensional knapsack problem (MMKP). The intercept matrix of the constraints is employed to find optimal or near-optimal solution of the MMKP. This heuristic approach is tested for 33 benchmark problems taken from OR library of sizes upto 7000, and the results have been compared with optimum solutions. Computational complexity is proved to be (2) of solving heuristically MMKP using this approach. The performance of our heuristic is compared with the best state-of-art heuristic algorithms with respect to the quality of the solutions found. The encouraging results especially for relatively large-size test problems indicate that this heuristic approach can successfully be used for finding good solutions for highly constrained NP-hard problems
    corecore