7 research outputs found

    Solving the Ising spin glass problem using a bivariate EDA based on Markov random fields.

    Get PDF
    Markov Random Field (MRF) modelling techniques have been recently proposed as a novel approach to probabilistic modelling for Estimation of Distribution Algorithms (EDAs). An EDA using this technique was called Distribution Estimation using Markov Random Fields (DEUM). DEUM was later extended to DEUMd. DEUM and DEUMd use a univariate model of probability distribution, and have been shown to perform better than other univariate EDAs for a range of optimization problems. This paper extends DEUM to use a bivariate model and applies it to the Ising spin glass problems. We propose two variants of DEUM that use different sampling techniques. Our experimental result show a noticeable gain in performance

    Evolutionary Approaches to Optimization Problems in Chimera Topologies

    Full text link
    Chimera graphs define the topology of one of the first commercially available quantum computers. A variety of optimization problems have been mapped to this topology to evaluate the behavior of quantum enhanced optimization heuristics in relation to other optimizers, being able to efficiently solve problems classically to use them as benchmarks for quantum machines. In this paper we investigate for the first time the use of Evolutionary Algorithms (EAs) on Ising spin glass instances defined on the Chimera topology. Three genetic algorithms (GAs) and three estimation of distribution algorithms (EDAs) are evaluated over 10001000 hard instances of the Ising spin glass constructed from Sidon sets. We focus on determining whether the information about the topology of the graph can be used to improve the results of EAs and on identifying the characteristics of the Ising instances that influence the success rate of GAs and EDAs.Comment: 8 pages, 5 figures, 3 table

    The Markov network fitness model

    Get PDF
    Fitness modelling is an area of research which has recently received much interest among the evolutionary computing community. Fitness models can improve the efficiency of optimisation through direct sampling to generate new solutions, guiding of traditional genetic operators or as surrogates for a noisy or long-running fitness functions. In this chapter we discuss the application of Markov networks to fitness modelling of black-box functions within evolutionary computation, accompanied by discussion on the relationship betweenMarkov networks andWalsh analysis of fitness functions.We review alternative fitness modelling and approximation techniques and draw comparisons with the Markov network approach. We discuss the applicability of Markov networks as fitness surrogates which may be used for constructing guided operators or more general hybrid algorithms.We conclude with some observations and issues which arise from work conducted in this area so far

    Metaheuristic Design Patterns: New Perspectives for Larger-Scale Search Architectures

    Get PDF
    Design patterns capture the essentials of recurring best practice in an abstract form. Their merits are well established in domains as diverse as architecture and software development. They offer significant benefits, not least a common conceptual vocabulary for designers, enabling greater communication of high-level concerns and increased software reuse. Inspired by the success of software design patterns, this chapter seeks to promote the merits of a pattern-based method to the development of metaheuristic search software components. To achieve this, a catalog of patterns is presented, organized into the families of structural, behavioral, methodological and component-based patterns. As an alternative to the increasing specialization associated with individual metaheuristic search components, the authors encourage computer scientists to embrace the ‘cross cutting' benefits of a pattern-based perspective to optimization algorithms. Some ways in which the patterns might form the basis of further larger-scale metaheuristic component design automation are also discussed

    Solving the Ising Spin Glass Problem using a Bivariate EDA based on Markov Random Fields

    No full text

    The role of Walsh structure and ordinal linkage in the optimisation of pseudo-Boolean functions under monotonicity invariance.

    Get PDF
    Optimisation heuristics rely on implicit or explicit assumptions about the structure of the black-box fitness function they optimise. A review of the literature shows that understanding of structure and linkage is helpful to the design and analysis of heuristics. The aim of this thesis is to investigate the role that problem structure plays in heuristic optimisation. Many heuristics use ordinal operators; which are those that are invariant under monotonic transformations of the fitness function. In this thesis we develop a classification of pseudo-Boolean functions based on rank-invariance. This approach classifies functions which are monotonic transformations of one another as equivalent, and so partitions an infinite set of functions into a finite set of classes. Reasoning about heuristics composed of ordinal operators is, by construction, invariant over these classes. We perform a complete analysis of 2-bit and 3-bit pseudo-Boolean functions. We use Walsh analysis to define concepts of necessary, unnecessary, and conditionally necessary interactions, and of Walsh families. This helps to make precise some existing ideas in the literature such as benign interactions. Many algorithms are invariant under the classes we define, which allows us to examine the difficulty of pseudo-Boolean functions in terms of function classes. We analyse a range of ordinal selection operators for an EDA. Using a concept of directed ordinal linkage, we define precedence networks and precedence profiles to represent key algorithmic steps and their interdependency in terms of problem structure. The precedence profiles provide a measure of problem difficulty. This corresponds to problem difficulty and algorithmic steps for optimisation. This work develops insight into the relationship between function structure and problem difficulty for optimisation, which may be used to direct the development of novel algorithms. Concepts of structure are also used to construct easy and hard problems for a hill-climber

    Using Prior Knowledge and Learning from Experience in Estimation of Distribution Algorithms

    Get PDF
    Estimation of distribution algorithms (EDAs) are stochastic optimization techniques that explore the space of potential solutions by building and sampling explicit probabilistic models of promising candidate solutions. One of the primary advantages of EDAs over many other stochastic optimization techniques is that after each run they leave behind a sequence of probabilistic models describing useful decompositions of the problem. This sequence of models can be seen as a roadmap of how the EDA solves the problem. While this roadmap holds a great deal of information about the problem, until recently this information has largely been ignored. My thesis is that it is possible to exploit this information to speed up problem solving in EDAs in a principled way. The main contribution of this dissertation will be to show that there are multiple ways to exploit this problem-specific knowledge. Most importantly, it can be done in a principled way such that these methods lead to substantial speedups without requiring parameter tuning or hand-inspection of models
    corecore