226 research outputs found

    Marriages of Mathematics and Physics: A Challenge for Biology

    Get PDF
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of “geometric judgments” from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) “space” should be revisited for the purposes of life sciences

    Bibliographie

    Get PDF

    Universal tools for analysing structures and interactions in geometry

    Get PDF
    This study examined symmetry and perspective in modern geometric transformations, treating them as functions that preserve specific properties while mapping one geometric figure to another. The purpose of this study was to investigate geometric transformations as a tool for analysis, to consider invariants as universal tools for studying geometry. Materials and Methods: The Erlangen ideas of F. I. Klein were used, which consider geometry as a theory of group invariants with respect to the transformation of the plane and space. Results and Discussion: Projective transformations and their extension to two-dimensional primitives were investigated. Two types of geometric correspondences, collinearity and correlation, and their properties were studied. The group of homotheties, including translations and parallel translations, and their role in the affine group were investigated. Homology with ideal line axes, such as stretching and centre stretching, was considered. Involutional homology and harmonic homology with the centre, axis, and homologous pairs of points were investigated. In this study unified geometry concepts, exploring how different geometric transformations relate and maintain properties across diverse geometric systems. Conclusions: It specifically examined Möbius transforms, including their matrix representation, trace, fixed points, and categorized them into identical transforms, nonlinear transforms, shifts, dilations, and inversions

    Non-Euclidean geometry and Weierstrassian mathematics: The background to Killing's work on Lie algebras

    Get PDF
    AbstractA discussion of the manner in which discoveries in non-Euclidean geometry, combined with the Weierstrassian attitude towards mathematics, led Wilhelm Killing, one of Weierstrass' students, to initiate a research program on foundations of geometry that led to his groundbreaking investigations on the structure of Lie algebras

    Bibliographie

    Get PDF

    The History of Mathematics and its implications for teaching

    Get PDF

    Integration of input-output and programming in land resource supply analysis

    Get PDF
    • …
    corecore