795 research outputs found

    A Survey of League Championship Algorithm: Prospects and Challenges

    Full text link
    The League Championship Algorithm (LCA) is sport-inspired optimization algorithm that was introduced by Ali Husseinzadeh Kashan in the year 2009. It has since drawn enormous interest among the researchers because of its potential efficiency in solving many optimization problems and real-world applications. The LCA has also shown great potentials in solving non-deterministic polynomial time (NP-complete) problems. This survey presents a brief synopsis of the LCA literatures in peer-reviewed journals, conferences and book chapters. These research articles are then categorized according to indexing in the major academic databases (Web of Science, Scopus, IEEE Xplore and the Google Scholar). The analysis was also done to explore the prospects and the challenges of the algorithm and its acceptability among researchers. This systematic categorization can be used as a basis for future studies.Comment: 10 pages, 2 figures, 2 tables, Indian Journal of Science and Technology, 201

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Bi-Objective simplified swarm optimization for fog computing task scheduling

    Get PDF
    In the face of burgeoning data volumes, latency issues present a formidable challenge to cloud computing. This problem has been strategically tackled through the advent of fog computing, shifting computations from central cloud data centers to local fog devices. This process minimizes data transmission to distant servers, resulting in significant cost savings and instantaneous responses for users. Despite the urgency of many fog computing applications, existing research falls short in providing time-effective and tailored algorithms for fog computing task scheduling. To bridge this gap, we introduce a unique local search mechanism, Card Sorting Local Search (CSLS), that augments the non-dominated solutions found by the Bi-objective Simplified Swarm Optimization (BSSO). We further propose Fast Elite Selecting (FES), a ground-breaking one-front non-dominated sorting method that curtails the time complexity of non-dominated sorting processes. By integrating BSSO, CSLS, and FES, we are unveiling a novel algorithm, Elite Swarm Simplified Optimization (EliteSSO), specifically developed to conquer time-efficiency and non-dominated solution issues, predominantly in large-scale fog computing task scheduling conundrums. Computational evidence reveals that our proposed algorithm is both highly efficient in terms of time and exceedingly effective, outstripping other algorithms on a significant scale

    Evolutionary Algorithms in Engineering Design Optimization

    Get PDF
    Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc

    Building Reliable Budget-Based Binary-State Networks

    Full text link
    Everyday life is driven by various network, such as supply chains for distributing raw materials, semi-finished product goods, and final products; Internet of Things (IoT) for connecting and exchanging data; utility networks for transmitting fuel, power, water, electricity, and 4G/5G; and social networks for sharing information and connections. The binary-state network is a basic network, where the state of each component is either success or failure, i.e., the binary-state. Network reliability plays an important role in evaluating the performance of network planning, design, and management. Because more networks are being set up in the real world currently, there is a need for their reliability. It is necessary to build a reliable network within a limited budget. However, existing studies are focused on the budget limit for each minimal path (MP) in networks without considering the total budget of the entire network. We propose a novel concept to consider how to build a more reliable binary-state network under the budget limit. In addition, we propose an algorithm based on the binary-addition-tree algorithm (BAT) and stepwise vectors to solve the problem efficiently
    corecore