47,935 research outputs found

    A high-accuracy optical linear algebra processor for finite element applications

    Get PDF
    Optical linear processors are computationally efficient computers for solving matrix-matrix and matrix-vector oriented problems. Optical system errors limit their dynamic range to 30-40 dB, which limits their accuray to 9-12 bits. Large problems, such as the finite element problem in structural mechanics (with tens or hundreds of thousands of variables) which can exploit the speed of optical processors, require the 32 bit accuracy obtainable from digital machines. To obtain this required 32 bit accuracy with an optical processor, the data can be digitally encoded, thereby reducing the dynamic range requirements of the optical system (i.e., decreasing the effect of optical errors on the data) while providing increased accuracy. This report describes a new digitally encoded optical linear algebra processor architecture for solving finite element and banded matrix-vector problems. A linear static plate bending case study is described which quantities the processor requirements. Multiplication by digital convolution is explained, and the digitally encoded optical processor architecture is advanced

    A Study of Speed of the Boundary Element Method as applied to the Realtime Computational Simulation of Biological Organs

    Full text link
    In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. Results indicate that BEM is fast enough to provide for realtime graphics if biological organs are assumed to follow linear elastostatic material behavior. Although the present work does not conduct any simulation using nonlinear material models, results from using the linear elastostatic material model imply that it would be difficult to obtain realtime performance if highly nonlinear material models that properly characterize biological organs are used. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.Comment: preprint, draft, 2 tables, 47 references, 7 files, Codes that can solve three dimensional linear elastostatic problems using constant boundary elements (of triangular shape) while ignoring body forces are provided as supplementary files; codes are distributed under the MIT License in three versions: i) MATLAB version ii) Fortran 90 version (sequential code) iii) Fortran 90 version (parallel code

    SWATI: Synthesizing Wordlengths Automatically Using Testing and Induction

    Full text link
    In this paper, we present an automated technique SWATI: Synthesizing Wordlengths Automatically Using Testing and Induction, which uses a combination of Nelder-Mead optimization based testing, and induction from examples to automatically synthesize optimal fixedpoint implementation of numerical routines. The design of numerical software is commonly done using floating-point arithmetic in design-environments such as Matlab. However, these designs are often implemented using fixed-point arithmetic for speed and efficiency reasons especially in embedded systems. The fixed-point implementation reduces implementation cost, provides better performance, and reduces power consumption. The conversion from floating-point designs to fixed-point code is subject to two opposing constraints: (i) the word-width of fixed-point types must be minimized, and (ii) the outputs of the fixed-point program must be accurate. In this paper, we propose a new solution to this problem. Our technique takes the floating-point program, specified accuracy and an implementation cost model and provides the fixed-point program with specified accuracy and optimal implementation cost. We demonstrate the effectiveness of our approach on a set of examples from the domain of automated control, robotics and digital signal processing
    corecore