91 research outputs found

    A local branching heuristic for MINLPs

    Full text link
    Local branching is an improvement heuristic, developed within the context of branch-and-bound algorithms for MILPs, which has proved to be very effective in practice. For the binary case, it is based on defining a neighbourhood of the current incumbent solution by allowing only a few binary variables to flip their value, through the addition of a local branching constraint. The neighbourhood is then explored with a branch-and-bound solver. We propose a local branching scheme for (nonconvex) MINLPs which is based on iteratively solving MILPs and NLPs. Preliminary computational experiments show that this approach is able to improve the incumbent solution on the majority of the test instances, requiring only a short CPU time. Moreover, we provide algorithmic ideas for a primal heuristic whose purpose is to find a first feasible solution, based on the same scheme

    Overview on mixed integer nonlinear programming problems

    Get PDF
    Many optimization problems involve integer and continuous variables that can be modeled as mixed integer nonlinear programming (MINLP) problems. This has led to a wide range of applications, in particular in some engineering areas. Here, we provide a brief overview on MINLP, and present a simple idea for a future nonconvex MINLP solution technique.Fundação para a Ciência e a Tecnologia (FCT

    Proposed shunt rounding technique for large-scale security constrained loss minimization

    Get PDF
    The official published version can be obtained from the link below - Copyright @ 2010 IEEE.Optimal reactive power flow applications often model large numbers of discrete shunt devices as continuous variables, which are rounded to their nearest discrete value at the final iteration. This can degrade optimality. This paper presents novel methods based on probabilistic and adaptive threshold approaches that can extend existing security constrained optimal reactive power flow methods to effectively solve large-scale network problems involving discrete shunt devices. Loss reduction solutions from the proposed techniques were compared to solutions from the mixed integer nonlinear mathematical programming algorithm (MINLP) using modified IEEE standard networks up to 118 buses. The proposed techniques were also applied to practical large-scale network models of Great Britain. The results show that the proposed techniques can achieve improved loss minimization solutions when compared to the standard rounding method.This work was supported in part by the National Grid and in part by the EPSRC. Paper no. TPWRS-00653-2009

    A feasibility-based algorithm for Computer Aided Molecular and Process Design of solvent-based separation systems

    Get PDF
    Computer-aided molecular and product design (CAMPD) can in principle be used to find simultaneously the optimal conditions in separation processes and the structure of the optimal solvents. In many cases, however, the solution of CAMPD problems is challenging. In this paper, we propose a solution approach for the CAMPD of solvent-based separation systems in which implicit constraints on phase behaviour in process models are used to test the feasibility of the process and solvent domains. The tests not only eliminate infeasible molecules from the search space but also infeasible combinations of solvent molecules and process conditions. The tests also provide bounds for the optimization of the process model (primal problem) for each solvent, facilitating numerical solution. This is demonstrated on a prototypical natural gas purification process

    Extended Formulations in Mixed-integer Convex Programming

    Full text link
    We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable with standard symmetric and nonsymmetric cones. Conic reformulations are shown to be effective extended formulations themselves because they encode separability structure. For mixed-integer conic-representable problems, we provide the first outer approximation algorithm with finite-time convergence guarantees, opening a path for the use of conic solvers for continuous relaxations. We then connect the popular modeling framework of disciplined convex programming (DCP) to the existence of extended formulations independent of conic representability. We present evidence that our approach can yield significant gains in practice, with the solution of a number of open instances from the MINLPLIB2 benchmark library.Comment: To be presented at IPCO 201
    • …
    corecore