1,105 research outputs found

    The Complexity of Manipulating kk-Approval Elections

    Full text link
    An important problem in computational social choice theory is the complexity of undesirable behavior among agents, such as control, manipulation, and bribery in election systems. These kinds of voting strategies are often tempting at the individual level but disastrous for the agents as a whole. Creating election systems where the determination of such strategies is difficult is thus an important goal. An interesting set of elections is that of scoring protocols. Previous work in this area has demonstrated the complexity of misuse in cases involving a fixed number of candidates, and of specific election systems on unbounded number of candidates such as Borda. In contrast, we take the first step in generalizing the results of computational complexity of election misuse to cases of infinitely many scoring protocols on an unbounded number of candidates. Interesting families of systems include kk-approval and kk-veto elections, in which voters distinguish kk candidates from the candidate set. Our main result is to partition the problems of these families based on their complexity. We do so by showing they are polynomial-time computable, NP-hard, or polynomial-time equivalent to another problem of interest. We also demonstrate a surprising connection between manipulation in election systems and some graph theory problems

    Solving hard problems in election systems

    Get PDF
    An interesting problem in the field of computational social choice theory is that of elections, in which a winner or set of winners is to be deduced from preferences among a collection of agents, in a way that attempts to maximize the collective well-being of the agents. Besides their obvious use in political science, elections are also used computationally, such as in multiagent systems, in which different agents may have different beliefs and preferences and must reach an agreeable decision. Because the purpose of voting is to gain an understanding of a collection of actual preferences, dishonesty in an election system is often harmful to the welfare of the voters as a whole. Different forms of dishonesty can be performed by the voters (manipulation), by an outside agent affecting the voters (bribery), or by the chair, or administrator, of an election (control). The Gibbard-Satterthwaite theorem shows that in all reasonable election systems, manipulation, or strategic voting, is always inevitable in some cases. Bartholdi, Tovey, and Trick counter by arguing that if finding such a manipulation is NP-hard, then manipulation by computationally-limited agents should not pose a significant threat. However, more recent work has exploited the fact that NP-hardness is only a worst-case measure of complexity, and has shown that some election systems that are NP-hard to manipulate may in fact be easy to manipulate under some reasonable assumptions. We evaluate, both theoretically and empirically, the complexity, worst-case and otherwise, of manipulating, bribing, and controlling elections. Our focus is particularly on scoring protocols. In doing so, we gain an understanding of how these election systems work by discovering what makes manipulation, bribery, and control easy or hard. This allows us to discover the strengths and weaknesses of scoring protocols, and gain an understanding of what properties of election systems are desirable or undesirable. One approach we have used to do this is relating the problems of interest in election systems to problems of known complexity, as well as to problems with known algorithms and heuristics, particularly Satisfiability and Partition. This approach can help us gain an understanding of computational social choice problems in which little is known about the complexity or potential algorithms. Among other results, we show how certain parameters and properties of scoring protocols can make elections easy or hard to manipulate. We find that the empirical complexity of manipulation in some cases have unusual behaviors for its complexity class. For example, it is found that in the case of manipulating the Borda election of unweighted voters with an unbounded candidate cardinality, the encoding of this problem to Satisfiability performs especially well near the boundary cases of this problem and for unsatisfiable instances, both results contrary to the normal behavior of NP-complete problems. Although attempts have been made to design fair election systems with certain properties, another dilemma that this has given rise to is the existence of election systems in which it is hard to elect the winners, at least in the worst case. Two notable election systems in which determining the winners are hard are Dodgson and Young. We evaluate the problem of finding the winners empirically, to extend these complexity results away from the worst case, and determine whether the worst-case complexity of these hard winner problems is truly a computational barrier. We find that, like most NP-complete problems such as Satisfiability, many instances of interest in finding winners of hard election systems are still relatively simple. We confirm that indeed, like Satisfiability, the hard worst-case results occur only in rare circumstances. We also find an interesting complexity disparity between the related problems of finding the Dodgson or Young score of a candidate, and that of finding the set of Dodgson or Young winners. Surprisingly, it appears empirically easier for one to find the set of all winners in a Dodgson or Young election than to score a single candidate in either election

    Computational Aspects of Nearly Single-Peaked Electorates

    Full text link
    Manipulation, bribery, and control are well-studied ways of changing the outcome of an election. Many voting rules are, in the general case, computationally resistant to some of these manipulative actions. However when restricted to single-peaked electorates, these rules suddenly become easy to manipulate. Recently, Faliszewski, Hemaspaandra, and Hemaspaandra studied the computational complexity of strategic behavior in nearly single-peaked electorates. These are electorates that are not single-peaked but close to it according to some distance measure. In this paper we introduce several new distance measures regarding single-peakedness. We prove that determining whether a given profile is nearly single-peaked is NP-complete in many cases. For one case we present a polynomial-time algorithm. In case the single-peaked axis is given, we show that determining the distance is always possible in polynomial time. Furthermore, we explore the relations between the new notions introduced in this paper and existing notions from the literature.Comment: Published in the Journal of Artificial Intelligence Research (JAIR). A short version of this paper appeared in the proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2013). An even earlier version appeared in the proceedings of the Fourth International Workshop on Computational Social Choice 2012 (COMSOC 2012

    Complexity of Manipulation, Bribery, and Campaign Management in Bucklin and Fallback Voting

    Get PDF
    A central theme in computational social choice is to study the extent to which voting systems computationally resist manipulative attacks seeking to influence the outcome of elections, such as manipulation (i.e., strategic voting), control, and bribery. Bucklin and fallback voting are among the voting systems with the broadest resistance (i.e., NP-hardness) to control attacks. However, only little is known about their behavior regarding manipulation and bribery attacks. We comprehensively investigate the computational resistance of Bucklin and fallback voting for many of the common manipulation and bribery scenarios; we also complement our discussion by considering several campaign management problems for Bucklin and fallback.Comment: 28 page
    • …
    corecore