648 research outputs found

    An Elimination Method for Solving Bivariate Polynomial Systems: Eliminating the Usual Drawbacks

    Full text link
    We present an exact and complete algorithm to isolate the real solutions of a zero-dimensional bivariate polynomial system. The proposed algorithm constitutes an elimination method which improves upon existing approaches in a number of points. First, the amount of purely symbolic operations is significantly reduced, that is, only resultant computation and square-free factorization is still needed. Second, our algorithm neither assumes generic position of the input system nor demands for any change of the coordinate system. The latter is due to a novel inclusion predicate to certify that a certain region is isolating for a solution. Our implementation exploits graphics hardware to expedite the resultant computation. Furthermore, we integrate a number of filtering techniques to improve the overall performance. Efficiency of the proposed method is proven by a comparison of our implementation with two state-of-the-art implementations, that is, LPG and Maple's isolate. For a series of challenging benchmark instances, experiments show that our implementation outperforms both contestants.Comment: 16 pages with appendix, 1 figure, submitted to ALENEX 201

    A Generic Position Based Method for Real Root Isolation of Zero-Dimensional Polynomial Systems

    Full text link
    We improve the local generic position method for isolating the real roots of a zero-dimensional bivariate polynomial system with two polynomials and extend the method to general zero-dimensional polynomial systems. The method mainly involves resultant computation and real root isolation of univariate polynomial equations. The roots of the system have a linear univariate representation. The complexity of the method is O~B(N10)\tilde{O}_B(N^{10}) for the bivariate case, where N=max(d,τ)N=\max(d,\tau), dd resp., τ\tau is an upper bound on the degree, resp., the maximal coefficient bitsize of the input polynomials. The algorithm is certified with probability 1 in the multivariate case. The implementation shows that the method is efficient, especially for bivariate polynomial systems.Comment: 24 pages, 5 figure

    Exact Symbolic-Numeric Computation of Planar Algebraic Curves

    Full text link
    We present a novel certified and complete algorithm to compute arrangements of real planar algebraic curves. It provides a geometric-topological analysis of the decomposition of the plane induced by a finite number of algebraic curves in terms of a cylindrical algebraic decomposition. From a high-level perspective, the overall method splits into two main subroutines, namely an algorithm denoted Bisolve to isolate the real solutions of a zero-dimensional bivariate system, and an algorithm denoted GeoTop to analyze a single algebraic curve. Compared to existing approaches based on elimination techniques, we considerably improve the corresponding lifting steps in both subroutines. As a result, generic position of the input system is never assumed, and thus our algorithm never demands for any change of coordinates. In addition, we significantly limit the types of involved exact operations, that is, we only use resultant and gcd computations as purely symbolic operations. The latter results are achieved by combining techniques from different fields such as (modular) symbolic computation, numerical analysis and algebraic geometry. We have implemented our algorithms as prototypical contributions to the C++-project CGAL. They exploit graphics hardware to expedite the symbolic computations. We have also compared our implementation with the current reference implementations, that is, LGP and Maple's Isolate for polynomial system solving, and CGAL's bivariate algebraic kernel for analyses and arrangement computations of algebraic curves. For various series of challenging instances, our exhaustive experiments show that the new implementations outperform the existing ones.Comment: 46 pages, 4 figures, submitted to Special Issue of TCS on SNC 2011. arXiv admin note: substantial text overlap with arXiv:1010.1386 and arXiv:1103.469

    Rigid continuation paths I. Quasilinear average complexity for solving polynomial systems

    Get PDF
    How many operations do we need on the average to compute an approximate root of a random Gaussian polynomial system? Beyond Smale's 17th problem that asked whether a polynomial bound is possible, we prove a quasi-optimal bound (input size)1+o(1)\text{(input size)}^{1+o(1)}. This improves upon the previously known (input size)32+o(1)\text{(input size)}^{\frac32 +o(1)} bound. The new algorithm relies on numerical continuation along \emph{rigid continuation paths}. The central idea is to consider rigid motions of the equations rather than line segments in the linear space of all polynomial systems. This leads to a better average condition number and allows for bigger steps. We show that on the average, we can compute one approximate root of a random Gaussian polynomial system of~nn equations of degree at most DD in n+1n+1 homogeneous variables with O(n5D2)O(n^5 D^2) continuation steps. This is a decisive improvement over previous bounds that prove no better than 2min(n,D)\sqrt{2}^{\min(n, D)} continuation steps on the average

    Algorithmic Contributions to the Theory of Regular Chains

    Get PDF
    Regular chains, introduced about twenty years ago, have emerged as one of the major tools for solving polynomial systems symbolically. In this thesis, we focus on different algorithmic aspects of the theory of regular chains, from theoretical questions to high- performance implementation issues. The inclusion test for saturated ideals is a fundamental problem in this theory. By studying the primitivity of regular chains, we show that a regular chain generates its saturated ideal if and only if it is primitive. As a result, a family of inclusion tests can be detected very efficiently. The algorithm to compute the regular GCDs of two polynomials modulo a regular chain is one of the key routines in the various triangular decomposition algorithms. By revisiting relations between subresultants and GCDs, we proposed a novel bottom-up algorithm for this task, which improves the previous algorithm in a significant manner and creates opportunities for parallel execution. This thesis also discusses the accelerations towards fast Fourier transform (FFT) over finite fields and FFT based subresultant chain constructions in the context of massively parallel GPU architectures, which speedup our algorithms by several orders of magnitude
    corecore