4 research outputs found

    Solving dynamic stochastic economic models by mathematical programming decomposition methods.

    Get PDF
    Discrete-time optimal control problems arise naturally in many economic problems. Despite the rapid growth in computing power and new developments in the literature, many economic problems are still quite challenging to solve. Economists are aware of the limitations of some of these approaches for solving these problems due to memory and computational requirements. However, many of the economic models present some special structure that can be exploited in an efficient manner. This paper introduces a decomposition methodology, based on a mathematical programming framework, to compute the equilibrium path in dynamic models by breaking the problem into a set of smaller independent subproblems. We study the performance of the method solving a set of dynamic stochastic economic models. The numerical results reveal that the proposed methodology is efficient in terms of computing time and accuracyDynamic stochastic economic model; Computation of equilibrium; Mathematical programming; Decomposition techniques;

    Asset Location in Tax-Deferred and Conventional Savings Accounts

    Get PDF
    The optimal allocation of assets among different asset classes (such as stocks and bonds) has received considerable attention in financial theory and practice. On the other hand, investors have not been given much guidance about which assets should be located in tax-deferred retirement accounts and which in conventional savings accounts. This paper derives optimal asset allocations (which assets to hold) and asset locations (where to hold them) for a risk-averse investor saving for retirement. Locating assets optimally can significantly improve the risk-adjusted performance of retirement savings.

    Solving dynamic stochastic economic models by mathematical programming decomposition methods

    Get PDF
    Discrete-time optimal control problems arise naturally in many economic problems. Despite the rapid growth in computing power and new developments in the literature, many economic problems are still quite challenging to solve. Economists are aware of the limitations of some of these approaches for solving these problems due to memory and computational requirements. However, many of the economic models present some special structure that can be exploited in an efficient manner. This paper introduces a decomposition methodology, based on a mathematical programming framework, to compute the equilibrium path in dynamic models by breaking the problem into a set of smaller independent subproblems. We study the performance of the method solving a set of dynamic stochastic economic models. The numerical results reveal that the proposed methodology is efficient in terms of computing time and accuracyPublicad

    Shape-constrained Estimation of Value Functions

    Full text link
    We present a fully nonparametric method to estimate the value function, via simulation, in the context of expected infinite-horizon discounted rewards for Markov chains. Estimating such value functions plays an important role in approximate dynamic programming and applied probability in general. We incorporate "soft information" into the estimation algorithm, such as knowledge of convexity, monotonicity, or Lipchitz constants. In the presence of such information, a nonparametric estimator for the value function can be computed that is provably consistent as the simulated time horizon tends to infinity. As an application, we implement our method on price tolling agreement contracts in energy markets
    corecore