16 research outputs found

    Solving a Generalized Heron Problem by means of Convex Analysis

    Get PDF
    The classical Heron problem states: \emph{on a given straight line in the plane, find a point CC such that the sum of the distances from CC to the given points AA and BB is minimal}. This problem can be solved using standard geometry or differential calculus. In the light of modern convex analysis, we are able to investigate more general versions of this problem. In this paper we propose and solve the following problem: on a given nonempty closed convex subset of Rs\R^s, find a point such that the sum of the distances from that point to nn given nonempty closed convex subsets of Rs\R^s is minimal

    A Look at the Generalized Heron Problem through the Lens of Majorization-Minimization

    Full text link
    In a recent issue of this journal, Mordukhovich et al.\ pose and solve an interesting non-differentiable generalization of the Heron problem in the framework of modern convex analysis. In the generalized Heron problem one is given k+1k+1 closed convex sets in \Real^d equipped with its Euclidean norm and asked to find the point in the last set such that the sum of the distances to the first kk sets is minimal. In later work the authors generalize the Heron problem even further, relax its convexity assumptions, study its theoretical properties, and pursue subgradient algorithms for solving the convex case. Here, we revisit the original problem solely from the numerical perspective. By exploiting the majorization-minimization (MM) principle of computational statistics and rudimentary techniques from differential calculus, we are able to construct a very fast algorithm for solving the Euclidean version of the generalized Heron problem.Comment: 21 pages, 3 figure

    Inertial Douglas-Rachford splitting for monotone inclusion problems

    Full text link
    We propose an inertial Douglas-Rachford splitting algorithm for finding the set of zeros of the sum of two maximally monotone operators in Hilbert spaces and investigate its convergence properties. To this end we formulate first the inertial version of the Krasnosel'ski\u{\i}--Mann algorithm for approximating the set of fixed points of a nonexpansive operator, for which we also provide an exhaustive convergence analysis. By using a product space approach we employ these results to the solving of monotone inclusion problems involving linearly composed and parallel-sum type operators and provide in this way iterative schemes where each of the maximally monotone mappings is accessed separately via its resolvent. We consider also the special instance of solving a primal-dual pair of nonsmooth convex optimization problems and illustrate the theoretical results via some numerical experiments in clustering and location theory.Comment: arXiv admin note: text overlap with arXiv:1402.529

    Computing medians and means in Hadamard spaces

    Full text link
    The geometric median as well as the Frechet mean of points in an Hadamard space are important in both theory and applications. Surprisingly, no algorithms for their computation are hitherto known. To address this issue, we use a split version of the proximal point algorithm for minimizing a sum of convex functions and prove that this algorithm produces a sequence converging to a minimizer of the objective function, which extends a recent result of D. Bertsekas (2001) into Hadamard spaces. The method is quite robust and not only does it yield algorithms for the median and the mean, but it also applies to various other optimization problems. We moreover show that another algorithm for computing the Frechet mean can be derived from the law of large numbers due to K.-T. Sturm (2002). In applications, computing medians and means is probably most needed in tree space, which is an instance of an Hadamard space, invented by Billera, Holmes, and Vogtmann (2001) as a tool for averaging phylogenetic trees. It turns out, however, that it can be also used to model numerous other tree-like structures. Since there now exists a polynomial-time algorithm for computing geodesics in tree space due to M. Owen and S. Provan (2011), we obtain efficient algorithms for computing medians and means, which can be directly used in practice.Comment: Corrected version. Accepted in SIAM Journal on Optimizatio
    corecore