16,432 research outputs found

    Postponing Branching Decisions

    Full text link
    Solution techniques for Constraint Satisfaction and Optimisation Problems often make use of backtrack search methods, exploiting variable and value ordering heuristics. In this paper, we propose and analyse a very simple method to apply in case the value ordering heuristic produces ties: postponing the branching decision. To this end, we group together values in a tie, branch on this sub-domain, and defer the decision among them to lower levels of the search tree. We show theoretically and experimentally that this simple modification can dramatically improve the efficiency of the search strategy. Although in practise similar methods may have been applied already, to our knowledge, no empirical or theoretical study has been proposed in the literature to identify when and to what extent this strategy should be used.Comment: 11 pages, 3 figure

    Detecting semantic groups in MIP models

    Get PDF

    Solving Assembly Line Balancing Problems by Combining IP and CP

    Full text link
    Assembly line balancing problems consist in partitioning the work necessary to assemble a number of products among different stations of an assembly line. We present a hybrid approach for solving such problems, which combines constraint programming and integer programming.Comment: 10 pages, Sixth Annual Workshop of the ERCIM Working Group on Constraints, Prague, June 200

    Parallel Graph Partitioning for Complex Networks

    Full text link
    Processing large complex networks like social networks or web graphs has recently attracted considerable interest. In order to do this in parallel, we need to partition them into pieces of about equal size. Unfortunately, previous parallel graph partitioners originally developed for more regular mesh-like networks do not work well for these networks. This paper addresses this problem by parallelizing and adapting the label propagation technique originally developed for graph clustering. By introducing size constraints, label propagation becomes applicable for both the coarsening and the refinement phase of multilevel graph partitioning. We obtain very high quality by applying a highly parallel evolutionary algorithm to the coarsened graph. The resulting system is both more scalable and achieves higher quality than state-of-the-art systems like ParMetis or PT-Scotch. For large complex networks the performance differences are very big. For example, our algorithm can partition a web graph with 3.3 billion edges in less than sixteen seconds using 512 cores of a high performance cluster while producing a high quality partition -- none of the competing systems can handle this graph on our system.Comment: Review article. Parallelization of our previous approach arXiv:1402.328

    Orbitopal Fixing

    Get PDF
    The topic of this paper are integer programming models in which a subset of 0/1-variables encode a partitioning of a set of objects into disjoint subsets. Such models can be surprisingly hard to solve by branch-and-cut algorithms if the order of the subsets of the partition is irrelevant, since this kind of symmetry unnecessarily blows up the search tree. We present a general tool, called orbitopal fixing, for enhancing the capabilities of branch-and-cut algorithms in solving such symmetric integer programming models. We devise a linear time algorithm that, applied at each node of the search tree, removes redundant parts of the tree produced by the above mentioned symmetry. The method relies on certain polyhedra, called orbitopes, which have been introduced bei Kaibel and Pfetsch (Math. Programm. A, 114 (2008), 1-36). It does, however, not explicitly add inequalities to the model. Instead, it uses certain fixing rules for variables. We demonstrate the computational power of orbitopal fixing at the example of a graph partitioning problem.Comment: 22 pages, revised and extended version of a previous version that has appeared under the same title in Proc. IPCO 200
    • …
    corecore