45,851 research outputs found

    A survey of parallel execution strategies for transitive closure and logic programs

    Get PDF
    An important feature of database technology of the nineties is the use of parallelism for speeding up the execution of complex queries. This technology is being tested in several experimental database architectures and a few commercial systems for conventional select-project-join queries. In particular, hash-based fragmentation is used to distribute data to disks under the control of different processors in order to perform selections and joins in parallel. With the development of new query languages, and in particular with the definition of transitive closure queries and of more general logic programming queries, the new dimension of recursion has been added to query processing. Recursive queries are complex; at the same time, their regular structure is particularly suited for parallel execution, and parallelism may give a high efficiency gain. We survey the approaches to parallel execution of recursive queries that have been presented in the recent literature. We observe that research on parallel execution of recursive queries is separated into two distinct subareas, one focused on the transitive closure of Relational Algebra expressions, the other one focused on optimization of more general Datalog queries. Though the subareas seem radically different because of the approach and formalism used, they have many common features. This is not surprising, because most typical Datalog queries can be solved by means of the transitive closure of simple algebraic expressions. We first analyze the relationship between the transitive closure of expressions in Relational Algebra and Datalog programs. We then review sequential methods for evaluating transitive closure, distinguishing iterative and direct methods. We address the parallelization of these methods, by discussing various forms of parallelization. Data fragmentation plays an important role in obtaining parallel execution; we describe hash-based and semantic fragmentation. Finally, we consider Datalog queries, and present general methods for parallel rule execution; we recognize the similarities between these methods and the methods reviewed previously, when the former are applied to linear Datalog queries. We also provide a quantitative analysis that shows the impact of the initial data distribution on the performance of methods

    Improving the Deductive System DES with Persistence by Using SQL DBMS's

    Get PDF
    This work presents how persistent predicates have been included in the in-memory deductive system DES by relying on external SQL database management systems. We introduce how persistence is supported from a user-point of view and the possible applications the system opens up, as the deductive expressive power is projected to relational databases. Also, we describe how it is possible to intermix computations of the deductive engine and the external database, explaining its implementation and some optimizations. Finally, a performance analysis is undertaken, comparing the system with current relational database systems.Comment: In Proceedings PROLE 2014, arXiv:1501.0169

    Dynamic Set Intersection

    Full text link
    Consider the problem of maintaining a family FF of dynamic sets subject to insertions, deletions, and set-intersection reporting queries: given S,SFS,S'\in F, report every member of SSS\cap S' in any order. We show that in the word RAM model, where ww is the word size, given a cap dd on the maximum size of any set, we can support set intersection queries in O(dw/log2w)O(\frac{d}{w/\log^2 w}) expected time, and updates in O(logw)O(\log w) expected time. Using this algorithm we can list all tt triangles of a graph G=(V,E)G=(V,E) in O(m+mαw/log2w+t)O(m+\frac{m\alpha}{w/\log^2 w} +t) expected time, where m=Em=|E| and α\alpha is the arboricity of GG. This improves a 30-year old triangle enumeration algorithm of Chiba and Nishizeki running in O(mα)O(m \alpha) time. We provide an incremental data structure on FF that supports intersection {\em witness} queries, where we only need to find {\em one} eSSe\in S\cap S'. Both queries and insertions take O\paren{\sqrt \frac{N}{w/\log^2 w}} expected time, where N=SFSN=\sum_{S\in F} |S|. Finally, we provide time/space tradeoffs for the fully dynamic set intersection reporting problem. Using MM words of space, each update costs O(MlogN)O(\sqrt {M \log N}) expected time, each reporting query costs O(NlogNMop+1)O(\frac{N\sqrt{\log N}}{\sqrt M}\sqrt{op+1}) expected time where opop is the size of the output, and each witness query costs O(NlogNM+logN)O(\frac{N\sqrt{\log N}}{\sqrt M} + \log N) expected time.Comment: Accepted to WADS 201

    Logic Programming Applications: What Are the Abstractions and Implementations?

    Full text link
    This article presents an overview of applications of logic programming, classifying them based on the abstractions and implementations of logic languages that support the applications. The three key abstractions are join, recursion, and constraint. Their essential implementations are for-loops, fixed points, and backtracking, respectively. The corresponding kinds of applications are database queries, inductive analysis, and combinatorial search, respectively. We also discuss language extensions and programming paradigms, summarize example application problems by application areas, and touch on example systems that support variants of the abstractions with different implementations

    Quantitative multi-objective verification for probabilistic systems

    Get PDF
    We present a verification framework for analysing multiple quantitative objectives of systems that exhibit both nondeterministic and stochastic behaviour. These systems are modelled as probabilistic automata, enriched with cost or reward structures that capture, for example, energy usage or performance metrics. Quantitative properties of these models are expressed in a specification language that incorporates probabilistic safety and liveness properties, expected total cost or reward, and supports multiple objectives of these types. We propose and implement an efficient verification framework for such properties and then present two distinct applications of it: firstly, controller synthesis subject to multiple quantitative objectives; and, secondly, quantitative compositional verification. The practical applicability of both approaches is illustrated with experimental results from several large case studies

    Dictionary Matching with One Gap

    Full text link
    The dictionary matching with gaps problem is to preprocess a dictionary DD of dd gapped patterns P1,,PdP_1,\ldots,P_d over alphabet Σ\Sigma, where each gapped pattern PiP_i is a sequence of subpatterns separated by bounded sequences of don't cares. Then, given a query text TT of length nn over alphabet Σ\Sigma, the goal is to output all locations in TT in which a pattern PiDP_i\in D, 1id1\leq i\leq d, ends. There is a renewed current interest in the gapped matching problem stemming from cyber security. In this paper we solve the problem where all patterns in the dictionary have one gap with at least α\alpha and at most β\beta don't cares, where α\alpha and β\beta are given parameters. Specifically, we show that the dictionary matching with a single gap problem can be solved in either O(dlogd+D)O(d\log d + |D|) time and O(dlogεd+D)O(d\log^{\varepsilon} d + |D|) space, and query time O(n(βα)loglogdlog2min{d,logD}+occ)O(n(\beta -\alpha )\log\log d \log ^2 \min \{ d, \log |D| \} + occ), where occocc is the number of patterns found, or preprocessing time and space: O(d2+D)O(d^2 + |D|), and query time O(n(βα)+occ)O(n(\beta -\alpha ) + occ), where occocc is the number of patterns found. As far as we know, this is the best solution for this setting of the problem, where many overlaps may exist in the dictionary.Comment: A preliminary version was published at CPM 201

    Assume-guarantee verification for probabilistic systems

    Get PDF
    We present a compositional verification technique for systems that exhibit both probabilistic and nondeterministic behaviour. We adopt an assume- guarantee approach to verification, where both the assumptions made about system components and the guarantees that they provide are regular safety properties, represented by finite automata. Unlike previous proposals for assume-guarantee reasoning about probabilistic systems, our approach does not require that components interact in a fully synchronous fashion. In addition, the compositional verification method is efficient and fully automated, based on a reduction to the problem of multi-objective probabilistic model checking. We present asymmetric and circular assume-guarantee rules, and show how they can be adapted to form quantitative queries, yielding lower and upper bounds on the actual probabilities that a property is satisfied. Our techniques have been implemented and applied to several large case studies, including instances where conventional probabilistic verification is infeasible
    corecore