204 research outputs found

    Algorithms to Approximate Column-Sparse Packing Problems

    Full text link
    Column-sparse packing problems arise in several contexts in both deterministic and stochastic discrete optimization. We present two unifying ideas, (non-uniform) attenuation and multiple-chance algorithms, to obtain improved approximation algorithms for some well-known families of such problems. As three main examples, we attain the integrality gap, up to lower-order terms, for known LP relaxations for k-column sparse packing integer programs (Bansal et al., Theory of Computing, 2012) and stochastic k-set packing (Bansal et al., Algorithmica, 2012), and go "half the remaining distance" to optimal for a major integrality-gap conjecture of Furedi, Kahn and Seymour on hypergraph matching (Combinatorica, 1993).Comment: Extended abstract appeared in SODA 2018. Full version in ACM Transactions of Algorithm

    On k-Column Sparse Packing Programs

    Full text link
    We consider the class of packing integer programs (PIPs) that are column sparse, i.e. there is a specified upper bound k on the number of constraints that each variable appears in. We give an (ek+o(k))-approximation algorithm for k-column sparse PIPs, improving on recent results of k2β‹…2kk^2\cdot 2^k and O(k2)O(k^2). We also show that the integrality gap of our linear programming relaxation is at least 2k-1; it is known that k-column sparse PIPs are Ξ©(k/log⁑k)\Omega(k/ \log k)-hard to approximate. We also extend our result (at the loss of a small constant factor) to the more general case of maximizing a submodular objective over k-column sparse packing constraints.Comment: 19 pages, v3: additional detail

    Partial resampling to approximate covering integer programs

    Full text link
    We consider column-sparse covering integer programs, a generalization of set cover, which have a long line of research of (randomized) approximation algorithms. We develop a new rounding scheme based on the Partial Resampling variant of the Lov\'{a}sz Local Lemma developed by Harris & Srinivasan (2019). This achieves an approximation ratio of 1+ln⁑(Ξ”1+1)amin⁑+O(log⁑(1+log⁑(Ξ”1+1)amin⁑)1 + \frac{\ln (\Delta_1+1)}{a_{\min}} + O\Big( \log(1 + \sqrt{ \frac{\log (\Delta_1+1)}{a_{\min}}} \Big), where amin⁑a_{\min} is the minimum covering constraint and Ξ”1\Delta_1 is the maximum β„“1\ell_1-norm of any column of the covering matrix (whose entries are scaled to lie in [0,1][0,1]). When there are additional constraints on the variable sizes, we show an approximation ratio of ln⁑Δ0+O(log⁑log⁑Δ0)\ln \Delta_0 + O(\log \log \Delta_0) (where Ξ”0\Delta_0 is the maximum number of non-zero entries in any column of the covering matrix). These results improve asymptotically, in several different ways, over results of Srinivasan (2006) and Kolliopoulos & Young (2005). We show nearly-matching inapproximability and integrality-gap lower bounds. We also show that the rounding process leads to negative correlation among the variables, which allows us to handle multi-criteria programs

    Generalized Assignment of Time-Sensitive Item Groups

    Get PDF
    We study the generalized assignment problem with time-sensitive item groups (chi-AGAP). It has central applications in advertisement placement on the Internet, and in virtual network embedding in Cloud data centers. We are given a set of items, partitioned into n groups, and a set of T identical bins (or, time-slots). Each group 1 0 and a non-negative utility u_{it} when packed into bin t in chi_j. A bin can accommodate at most one item from each group and the total size of the items in a bin cannot exceed its capacity. The goal is to find a feasible packing of a subset of the items in the bins such that the total utility from groups that are completely packed is maximized. Our main result is an Omega(1)-approximation algorithm for chi-AGAP. Our approximation technique relies on a non-trivial rounding of a configuration LP, which can be adapted to other common scenarios of resource allocation in Cloud data centers
    • …
    corecore