3 research outputs found

    Passively Controllable Smart Antennas

    Get PDF
    We recently introduced passively controllable smart (PCS) antenna systems for efficient wireless transmission, with direct applications in wireless sensor networks. A PCS antenna system is accompanied by a tunable passive controller whose adjustment at every signal transmission generates a specific radiation pattern. To reduce co-channel interference and optimize the transmitted power, this antenna can be programmed to transmit data in a desired direction in such a way that no signal is transmitted (to the far field) at pre-specified undesired directions. The controller of a PCS antenna was assumed to be centralized in our previous work, which was an impediment to its implementation. In this work, we study the design of PCS antenna systems under decentralized controllers, which are both practically implementable and cost efficient. The PCS antenna proposed here is made of one active element and its programming needs solving second-order-cone optimizations. These properties differentiate a PCS antenna from the existing smart antennas, and make it possible to implement a PCS antenna on a small-sized, low-power silicon chip

    Minimal realizations of three-port resistive networks

    Get PDF
    published_or_final_versio

    Solving Large-Scale Hybrid Circuit-Antenna Problems

    No full text
    Motivated by different applications in circuits, electromagnetics, and optics, this paper is concerned with the synthesis of a particular type of linear circuit, where the circuit is associated with a control unit. The objective is to design a controller for this control unit such that certain specifications on the parameters of the circuit are satisfied. It is shown that designing a control unit in the form of a switching network is an NP-complete problem that can be formulated as a rank-minimization problem. It is then proven that the underlying design problem can be cast as a semidefinite optimization if a passive network is designed instead of a switching network. Since the implementation of a passive network may need too many components, the design of a decoupled (sparse) passive network is subsequently studied. This paper introduces a tradeoff between design simplicity and implementation complexity for an important class of linear circuits. The superiority of the developed techniques is demonstrated by different simulations. In particular, for the first time in the literature, a wavelength-size passive antenna is designed, which has an excellent beamforming capability and which can concurrently make a null in at least eight directions
    corecore