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Minimal Realizations of
Three-Port Resistive Networks

Kai Wang and Michael Z. Q. Chen, Member, IEEE

Abstract—This paper is concerned with the minimal realization
problem of a third-order real symmetric matrix as the admittance
of three-port resistive networks. First, a necessary and sufficient
condition is derived for a real symmetric matrix to be realizable
as the admittance of three-port resistive networks with four termi-
nals and at most elements, where . Since it
is well-known that the matrix must be paramount, necessary and
sufficient conditions are obtained for any paramount matrix to be
realizable as the admittance of three-port resistive networks with
at most elements, where . Moreover, a necessary
and sufficient condition is derived for a paramount matrix that
cannot be realized with less than five elements to be realizable as
the admittance of three-port resistive networks with five elements.
Finally, some numerical examples are presented to illustrate the
results. The results of this paper can contribute to solving minimal
realization problems of one-port and multi-port transformerless
networks with more than one kind of elements.

Index Terms—Paramountcy, passive network synthesis, three-
port resistive networks.

I. INTRODUCTION

P ASSIVE network synthesis is an important subject in sys-
tems theory, which has experienced its “golden era” from

the 1930s to the 1970s [1], [7], [31], [34]. As stated in [1], [31],
a linear, lumped, time-invariant, reciprocal -port network is
passive if and only if its impedance (resp. admittance) is
a real-rational symmetric positive-real matrix (symmetric PR)
whenever exists, which can always be physically con-
structed with a finite number of resistors, inductors, capacitors,
and transformers. When , Bott and Duffin [4] estab-
lished a transformerless realization procedure that can realize
any positive-real function as the impedance (resp. admittance)
of a one-port passive network consisting of only resistors, induc-
tors, and capacitors, which, however, generates a large number
of redundant elements. Although a series of further investiga-
tions were made [29], [32], minimal transformerless realiza-
tion problems for passive one-port networks are far from being
solved to date. Moreover, unlike the one-port case, realizability
of passive multi-port transformerless networks is un-
solved.
Recently, a new two-terminal passive mechanical element

named inerter [36] was invented with the property that the
force applied at the two terminals is proportional to the relative
acceleration between them, that is, , where the
constant is called the inertance. Based on the force-current
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analogy, the inerter is analogous to the capacitor. Therefore,
the analogy between passive mechanical and electrical circuit
elements has been completed, where dampers, springs, inerters,
and levers are analogous to resistors, inductors, capacitors, and
transformers, respectively. As a result, the theory of passive
network synthesis can be directly transplanted into passive
mechanical design (see [14]), which makes the design become
more systematic. Based on circuit synthesis theory, any passive
mechanical system can be physically constructed with a finite
number of dampers, springs, inerters, and levers (levers are
not necessary for the one-port case). So far, mechanisms con-
taining the inerter have been successfully applied to a series of
mechanical control systems [20], [21], [24]. As a consequence,
interest in passive network synthesis has revived [10]–[13],
[15]–[17], [25], [26], [40], [41]. Particularly, Kalman made
an independent call for renewed effort [27]. In addition to the
application in mechanical engineering, the passive network still
has its application value in the area of electrical engineering
such as circuit-antenna design [28], [30], and external circuits
of the mechatronic system utilized in the suspension system
control are passive electrical networks [39].
The -port resistive network is an important class of passive

reciprocal -port networks containing only resistors, which was
widely investigated from the 1950s to the 1970s [2], [5], [6],
[8], [9], [22], [35], [37]. Through the extraction of elements,
realizability results of -port resistive networks can be applied
to solve realization problems of one-port networks containing a
limited number of certain two kinds of elements [12], which is
also stated in [25]. Moreover, some methods and results of in-
vestigating -port resistive networks can provide guidance on
synthesis of general transformerless -port networks. Because
of passivity and reciprocity, the admittance (resp. impedance) of
-port resistive networks must be non-negative definite. Since

no transformer is present, there should be further constraints.
Cederbaum [8] proved that the admittance (resp. impedance) of
-port resistive networks must be paramount. When ,

Tellegen [37] showed that paramountcy is a necessary and suf-
ficient condition for the realizability. Since Tellegen's work is in
Dutch, [10, App. A] presented a completed and better structured
reworking in English. When , although the realizability of
admittances as -port resistive networks containing ter-
minals has been solved [2], [5], [6], [22], how to obtain a testable
realizability condition for the realizability of general -port re-
sistive networks is still an open problem (see [18]). Recently,
Chen et al. [16] obtained some new results on the realizability
of -port resistive networks containing terminals. Moreover,
unlike the synthesis of one-port networks, minimal real-
izations of -port resistive networks in terms of the total number
of elements have seldom been discussed, which, however, has
important practical implications. See [19] for a survey on syn-
thesis of -port resistive networks.
This paper is concerned with minimal realizations of any

third-order real symmetric matrix as the admittance of three-

1549-8328 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



WANG AND CHEN: MINIMAL REALIZATIONS OF THREE-PORT RESISTIVE NETWORKS 987

Fig. 1. The canonical configuration that can realize any third-order paramount
admittance, where the conductances of elements are positive, 0, or [35].

port resistive networks. Paramountcy is a necessary and suf-
ficient condition for any third-order real symmetric matrix to
be realizable as the admittance of a three-port resistive network
[35], [37]. Moreover, it is known that the canonical configura-
tion [35, Fig. 11(B)] (see Fig. 1) that can realize any paramount
matrix as the admittance generally contains six elements. Since
elements are preferred to be as few as possible, it is essential to
investigate realization problems of three-port resistive networks
with the least number of elements.
First, a necessary and sufficient condition is derived for a

third-order real symmetric matrix to be realizable as the ad-
mittance of a three-port four-terminal resistive network with at
most elements, where . Then, together with
discussion in [17], one directly obtains a necessary and suffi-
cient condition for a third-order paramount matrix to be real-
izable as the admittance of a three-port resistive network con-
taining at most elements for , where the case
of has been presented in [17]. Together with topolog-
ical constraints, a four-element configuration is presentedwhose
admittance is not always realizable as a network with four ter-
minals and at most four elements. By deriving the realizability
condition of the configuration, one obtains a necessary and suf-
ficient condition for a third-order paramount matrix to be real-
izable with at most four elements. Similarly, by finding all the
five-element configurations whose admittances are not always
realizable as networks with four terminals and at most five el-
ements and investigating their realizability conditions, a neces-
sary and sufficient condition is derived for a paramount matrix
that cannot be realized with less than five elements to be real-
izable as the admittance of three-port resistive networks with
five elements. Since the augmented graph of three-port resistive
networks with no more than five elements must be planar, the
results of this paper can be directly transformed to those of the
impedance synthesis based on the principle of duality. The in-
vestigation of this paper can provide guidance on minimal real-
ization problems of more general -port resistive networks and
can be a critical step toward solving the realizability of -port

transformerless networks. Moreover, the results can be
utilized to solve minimal realization problems of one-port or
two-port passive mechanical or electrical networks by elements
extraction [12], [17], results of which can contribute to passive
mechanical control with the inerter [14], [36].

II. PROBLEM FORMULATION

Consider a real symmetric third-order matrix as

(1)

If is realizable as the admittance of three-port resistive net-
works, then it is necessarily paramount [35]. This paper ad-
dresses the following question: What are necessary and suffi-
cient conditions for a given paramount matrix in the form of
(1) to be realizable as the admittance of three-port resistive net-
works with at most elements, where , and
what about the covering configurations? It is assumed that there
is no transformer and values of elements are positive and finite.
The classical graph theory is utilized (see [34]).
Notations: denotes the set of real symmetric ma-

trices. denotes an th-order real symmetric matrix;
specially, denotes a third-order real symmetric matrix
in the form of (1). denotes a minor of , where

, , ,
, , and

.

III. PRELIMINARIES

Definition 1: [3] For any -port resistive network with
elements and nodes, a graph called augmented graph is
formulated by letting each port or each element correspond to
an edge and each node of the network correspond to a vertex.
The subgraph that consists of all the edges corresponding to
the ports is called a port graph. The subgraph that consists of
all the edges corresponding to the elements is called a network
graph. Furthermore, the edge belonging to a port graph is
called a port edge; the edge belonging to a network graph is
called a network edge.
FromDefinition 1, it is obvious that . The concept

of isomorphism for graphs has been defined in [34, p. 13]. Since
the augmented graph contains two types of edges: port edges
and network edges, it is needed to define the isomorphism for
augmented graphs as follows.
Definition 2: Two augmented graphs and are iso-

morphic if there simultaneously exist the one-to-one cor-
respondence between vertices of and , the one-to-one
correspondence between port edges of and , and the
one-to-one correspondence between network edges of and
, which preserves the incidence relationships.
It is obvious that two isomorphic augmented graphs can cor-

respond to the same -port resistive network. Furthermore, the
following assumption is made throughout the paper.
Assumption 1: The augmented graph of -port resistive

networks is connected.
If a given -port resistive network does not satisfy Assump-

tion 1, then it is obvious that there are at least two connected sub-
networks. By short-circuiting any two nodes of each two con-
nected subnetworks, the given -port resistive network with an
unconnected augmented graph can always be equivalent to an-
other network satisfying Assumption 1 and containing the same
number of elements. Therefore, Assumption 1 does not affect
the final realizability results. Since a connected graph always
contains a tree [34, p. 25], the following lemma is valid.
Lemma 1: [17] An -port resistive network has a well-de-

fined admittance if and only if its port graph is made part of
a tree of its augmented graph .
Definition 3: A node that is not the terminal of a network is

called an internal node.
For an -port resistive network, any internal node can be

eliminated by the generalized star-mesh transformation (see
[38]) without increasing the number of elements. Therefore,
without loss of generality, one alsomakes the following assump-
tion in this paper.
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Fig. 2. The structures of two -port networks stated in Lemma 2, where (a) is
for and (b) is for .

Assumption 2: For an -port resistive network, there is no
internal node, that is to say, all the nodes must be terminals.
Consider an -port resistive network consisting of three

parts: , and , any one of which has only one common
node with another [see Fig. 2(a)]. Exchanging the positions of

and without any other alterations yields another -port
resistive network as in Fig. 2(b).
Lemma 2: Two -port resistive networks and , whose

structures are as shown in Fig. 2, have the same admittance.
Proof: As derived in [3], the admittance of any -port

resistive network is expressed as

(2)

where is a diagonal matrix, each diagonal entry of which is
the impedance of each element, and is the
fundamental circuit matrix (see [34, pg. 91]) of the augmented
graph , where the columns of cor-
respond to edges of the network graph . It is obvious that
and have the same and . Hence, the admittance ma-
trices of and are the same by (2).
Definition 4: [5] A tree with all the branches incident at

a common vertex is called a Lagrangian tree. A tree whose
branches form a path is called a path tree.
Definition 5: [6] A cross-sign change of a matrix is to change

the sign of each non-zero entry in the th row and th column
except the diagonal entry.
A cross-sign change corresponds to switching the polarity of

a port. Moreover, interchanging two rows and corresponding
two columns corresponds to swapping two ports.
Definition 6: [9] A dominant matrix is a real symmetric ma-

trix such that each of its main diagonal entries is not less than
the sum of absolute values of all other entries in the same row.
A uniformly tapered matrix is an th-order real symmetric ma-
trix whose entries satisfy

for with , where
for .

Based on Lemma 1, if the admittance of an -port resistive
network exists, then the least number of terminals is ,
where constitutes a tree of .
Lemma 3: [5], [22] A matrix is realizable as the

admittance of an -port resistive network with termi-
nals whose port graph is a Lagrangian tree, if and only if after
a finite number of cross-sign changes is a dominant matrix
with all the off-diagonal entries non-positive. Moreover, if
is a dominant matrix with all the off-diagonal entries non-pos-
itive, then all the port edges are oriented towards (or from) the
common vertex [see Fig. 3(a)], and the values of the conduc-
tances connecting any two terminals are uniquely determined
as for with and

for all [see Fig. 3(b)].
Lemma 4: [5], [22] A matrix is realizable as the

admittance of an -port resistive network with termi-
nals whose port graph is a path tree, if and only if after a finite

Fig. 3. (a) The directed port graph that is a Lagrangian tree with all the port
edges oriented towards the common vertex ; (b) the graph connecting each
two vertices of , where for with .

Fig. 4. (a) The directed port graph that is a path tree with all the port edges
ordered and oriented to the same direction; (b) the graph connecting each two
vertices of , where for with .

number of cross-sign changes and a proper rearrangement of
rows and columns is a uniformly tapered matrix. Moreover,
if is a uniformly tapered matrix, then port edges are ordered
and oriented to the same direction [see Fig. 4(a)], and the values
of the conductances connecting any two terminals are uniquely
determined as for

with , where
for [see Fig. 4(b)].

IV. MAIN RESULTS
If the admittance of a three-port resistive network exists, then

the number of terminals must be four, five, or six. Lemma 5
presents a necessary and sufficient condition for any third-order
real symmetric matrix to be realizable as the admit-
tance of three-port resistive networks containing four termi-
nals and at most elements where . Fur-
thermore, necessary and sufficient conditions are obtained for
a paramount matrix to be realizable as the admittances
of three-port resistive networks containing at most elements
where in Theorems 1, 3, and 9.

A. Minimal Realizability With Four Terminals
Lemma 5: A matrix is realizable as the admittance

of three-port resistive networks containing four terminals and at
most elements where , if and only if
1) when , the following inequalities hold si-

multaneously with at least of the six inequality
signs being equality: , , ,

, , and
;

2) when , at least one of the following three
conditions holds with at least of the six inequality
signs being equality: i) , ,

, and ; ii)
, , , and

; iii) ,
, , and .

Proof: When the number of terminals is four, the port
graph is either a Lagrangian tree or path tree. Hence, this
lemma can follow from Lemmas 3 and 4, where Condition
1 corresponds to the Lagrangian-tree case and Condition 2
corresponds to the path-tree case.
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B. Realizability With at Most Four Elements

First, a necessary and sufficient condition is presented for the
realizability with at most elements for , following
discussion in [17].
Theorem 1: A paramount matrix is realizable as

the admittance of three-port resistive networks with at most
elements where , if and only if satisfies the
condition of Lemma 5.

Proof: The case of follows directly from [17]. It is
easy to prove cases of and by the method in [17].
In order to obtain a necessary and sufficient condition for any

to be realizable as the admittance of a three-port resis-
tive network with at most four elements, it suffices to find the
configurations that cannot always be equivalent to a three-port
four-terminal configuration with at most four elements and de-
rive their realizability conditions, since the condition of Lemma
5 for is a necessary and sufficient condition for the realiz-
ability of three-port resistive networks with four terminals and
at most four elements. Prior to the discussion, a series of suffi-
cient conditions are established for the realizability of three-port
resistive networks containing four terminals and at most four el-
ements.
Lemma 6: For a paramount matrix , if at least two of
, , and are zero, then is realizable as the admittance

of a three-port resistive network containing four terminals and
at most four elements.

Proof: After a proper rearrangement of rows and corre-
sponding columns, satisfies . The
paramountcy of implies that ,
, and . Hence, it follows that , ,

, , ,
, and

. Then, the condition of Lemma 5 holds for
. Therefore, the given is realizable as the admittance of

a three-port resistive network containing four terminals and at
most four elements.
Lemma 6 shows that if a three-port resistive network whose

admittance exists cannot be equivalent to the one containing
four terminals and at most four elements, then its augmented
graph must be nonseparable (see [34, p. 35]).
Lemma 7: If a paramount matrix contains two equal

rows or two rows for which one row is the negative of the other,
then is realizable as the admittance of the three-port resistive
network containing four terminals and at most four elements.

Proof: First, consider the case when contains two
equal rows. Assume them to be the first and second rows. To-
gether with the symmetry, is in the form of

Together with paramountcy of , one obtains that
, , ,
, , ,

and .
Hence, Condition 2 of Lemma 5 must hold for . When
there is another pair of two equal rows, a similar argument can
be applied. Moreover, the other case when contains two rows
where one row is the negative of the other can be proved using
the similar method.
Lemma 7 shows that if a three-port resistive network whose

admittance exists cannot be equivalent to the one containing

Fig. 5. The configuration discussed in Lemma 8, where , , , .

Fig. 6. (a) The port graph of three-port resistive networks containing five termi-
nals; (b) the port graph of three-port resistive networks containing six terminals.

four terminals and at most four elements, its augmented graph
cannot contain two port edges directly in series.

Lemma 8: A matrix is realizable as the admittance
of a three-port resistive network with at most four elements if
and only if satisfies the condition of Lemma 5 for or
is realizable as the configuration in Fig. 5.
Proof: Sufficiency. The sufficiency is obvious by Lemma

5.
Necessity. As discussed above, the number of possible ter-

minals can only be four, five, or six. If the number of terminals
is four, the condition of Lemma 5 holds for .
If the number of terminals is five, then the port graph must

be the one in Fig. 6(a), which consists of twomaximal connected
subgraphs (see [34, p. 16]). If the number of elements is at most
three, then the condition of Lemma 5 holds for by The-
orem 1, which further implies that the condition of Lemma 5
holds for . Therefore, Let us assume that the number
of elements is four and try to find out the possible configura-
tions whose admittances does not always satisfy the condition
of Lemma 5 for . Denote the cut-set that separates into
two parts respectively containing two maximal connected sub-
graphs of as . It is obvious that all the edges belonging
to must be network edges. By Lemma 6, both vertices
and must be incident by at least one network edge belong to

. Otherwise, must be separable, implying that the admit-
tance must always satisfy the condition of Lemma 5 for .
Moreover, if the number of network edges belonging to that
are incident at vertex or is only one, then the network can
always be equivalent to another one containing four terminals
and at most four elements by Lemma 2, implying that the condi-
tion of Lemma 5 holds for . Therefore, each of vertices
and must be incident by two network edges belonging to .
By Lemmas 6 and 7, each of vertices must be incident
by at least one network edge belonging to . If one regards
two augmented graphs that are isomorphic with each other as
the same graph, it is not difficult to see that only the configu-
rations whose graphs are as in Fig. 7 are possible, where the
bold line segments denote port edges and the light ones denote
network edges. Furthermore, utilizing Lemma 2 one can elimi-
nate Fig. 7(b). The configuration whose graph is Fig. 7(a) is as
shown in Fig. 5.
If the number of terminals is six, then the port graph must

be the one in Fig. 6(b), which consists of three maximal con-
nected subgraphs. It suffices to show that there is no such class
of networks that cannot always be equivalent to another one
containing less than six terminals and at most four elements.
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Fig. 7. Augmented graphs discussed in the proof of Theorem 8, where edges in
bold line segments are port edges and those in light line segments are network
edges.

Fig. 8. Three-port resistive configurations containing five elements mentioned
in Lemma 9, where , , , , .

Assume that such a network exists. Using a similar argument as
above, one can imply that at least six elements are needed by
Lemmas 2, 6, and 7, which is impossible.
Theorem 2: Consider a paramount matrix that cannot

be realized as the admittance of three-port resistive networks
containing less than four elements. Then, is realizable as the
admittance of the configuration in Fig. 5 if and only if at least
one of the following conditions holds: i) and

; ii) and ;
iii) and .

Proof: See Appendix A for the detail.
Theorem 3: A paramount matrix is realizable as the

admittance of three-port resistive networks with at most four
elements if and only if satisfies the condition of Lemma 5 for

or the condition of Theorem 2.
Proof: This theorem follows directly from Lemma 8 and

Theorems 1 and 2.

C. Realizability With Five Elements
Now, let us consider the paramount matrix that

cannot be realized as the admittance of three-port resistive net-
works containing less than five elements, that is, does not satisfy
the condition of Theorem 3. Then, a necessary and sufficient
condition will be established for such to be realizable as the
admittance of three-port resistive networks containing five ele-
ments.
Lemma 9: If is the admittance of at least one config-

uration in Fig. 8, then is always realizable as the admittance
of a three-port resistive network containing four terminals and
at most four elements.

Proof: It suffices to prove that the admittances of two con-
figurations in Fig. 8 always satisfy the condition of Lemma 5
for . The detail is omitted for brevity.
Lemma 10: A matrix that does not satisfy the condi-

tion of Theorem 3 is realizable as the admittance of three-port
resistive networks containing five elements if and only if sat-
isfies the condition of Lemma 5 for or is realizable as
at least one configuration in Figs. 9 and 10.

Proof: Sufficiency. The sufficiency part can be directly
proved together with Lemma 5.
Necessity: The number of possible terminals must be four,

five, or six. If the number of terminals is four, then the condition
of Lemma 5 holds for .

Fig. 9. Three-port resistive configurations containing five elements mentioned
in Lemma 10, where , , , , .

Fig. 10. A three-port resistive configuration containing five elements men-
tioned in Lemma 10, where , , , , .

If the number of terminals is five, then the port graph is as
shown in Fig. 6(a), consisting of two maximal connected sub-
graphs. Since the condition of Theorem 3 does not hold, the
number of elements cannot be less than five. Then, we will find
all possible configurations that cannot always be equivalent to
the one with four terminals and at most five elements. Note
that the augmented graph must be nonseparable by Lemma
6 and the augmented graph cannot contain two port edges di-
rectly in series by Lemma 7. Denote the cut-set that separates
into two parts respectively containing two components of

as . Then, together with Lemma 2, each of vertices and
must be incident by at least two network edges belonging to
, and vertices must be incident by at least one network

edge belonging to . Hence, the number of edges belonging to
must be either four or five, which are all network edges. If
contains four edges, then only augmented graphs shown in

Figs. 11(a)–11(f) are possible utilizing the previous constraints
provided that one regards two augmented graphs that are iso-
morphic with each other as the same graph. When contains
five edges, only augmented graphs shown in Figs. 11(g) and
11(h) are possible utilizing the previous constraints provided
that one regards two augmented graphs that are isomorphic with
each other as the same graph. Furthermore, Figs. 11(c) and 11(f)
are eliminated by Lemma 9. Then, the possible configurations
are shown in Figs. 9 and 10.
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Fig. 11. Augmented graphs discussed in the proof of Lemma 10, where edges
in bold line segments are port edges and those in light line segments are network
edges.

If the number of terminals is six, then the port graph must
be the one in Fig. 6(b), consisting of three components. By
Lemmas 2 and 6, each of six vertices of must be incident
by at least two network edges, provided that a network cannot
be equivalent to the one containing less terminals and at most
five elements. This means that at least six network edges are
needed. Therefore, the admittance of any three-port five-ele-
ment network with six terminals is always realizable as the one
with fewer terminals and at most five elements.
Theorem 4: A paramount matrix that does not satisfy

the condition of Theorem 3 is realizable as the admittance of the
configuration in Fig. 9(a) if and only if
1) when , at least one of the following con-

ditions holds: i) and
; ii) and

; iii)
and ;

2) when , at least one of the following con-
ditions holds: i) and

; ii)
and ; iii)

and .
Proof: See Appendix B for the detail.

Theorem 5: A paramount matrix that does not satisfy
the condition of Theorem 3 is realizable as the admittance of the
configuration in Fig. 9(b) if and only if
1) when , at least one of the following condi-

tions holds: i) ;
ii) ; iii)

;
2) when , at least one of the following

conditions holds: i) and
; ii)

and
; iii) and

.
Proof: The method is similar to that of Theorem 4.

Theorem 6: A paramount matrix that does not satisfy
the condition of Theorem 3 is realizable as the admittance of
the configuration in Fig. 9(c) if and only if , and
at least one of the following conditions holds: i)

; ii)

; iii)

.
Proof: The method is similar to that of Theorem 4.

Theorem 7: A paramount matrix that does not satisfy
the condition of Theorem 3 is realizable as the admittance of the
configuration in Fig. 9(d) if and only if
1) when , at least one of the following

conditions holds: i)
; ii)

; iii)
;

2) when , at least one of the following
conditions holds: i)

and
; ii)

and

; iii)
and

.
Proof: The method is similar to that of Theorem 4.

Theorem 8: A paramount matrix that does not satisfy
the condition of Theorem 3 is realizable as the admittance of the
configuration in Fig. 9(e) if and only if
1) when , at least one of the following condi-

tions holds: i)
or
holds and

; ii)
or

holds and
;

iii)
or
holds and

;
2) when , at least one of the following

conditions holds: i)
or
holds and

; ii)

or
holds and

; iii)

or
holds and

.
Proof: The method is similar to that of Theorem 4.

Lemma 11: If a paramount matrix that does not sat-
isfy the condition of Theorem 3 is realizable as the admittance
of the configuration in Fig. 10, then is also realizable as the
admittance of the configuration in Fig. 9(a).

Proof: It suffices to prove that the admittance of the con-
figuration in Fig. 10 always satisfies the condition of Theorem
4. The detail is omitted for brevity.
As a summary, the final result is obtained as follows.
Theorem 9: A paramount matrix that does not satisfy

the condition of Theorem 3 is realizable as the admittance of a
three-port resistive network with five elements, if and only if
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satisfies the condition of Lemma 5 for or satisfies at
least one of the conditions in Theorems 4–8.

Proof: This theorem follows directly from Lemmas 10 and
11 and Theorems 4–8.
Remark 1: By Kuratowski's Theorem in [23, p. 109], it can

be implied that any graph containing less than nine edges must
be planar. Therefore, the augmented graphs of three-port resis-
tive networks containing no more than five elements must be
planar, which means that the dual graphs always exist (see [34,
Theorem 3.15]). Based on the principle of duality, the results
in Theorems 1–9 can be directly transformed to those of the
impedance case.
Remark 2: From results of this paper, it is clear that the least

number of elements to realize the entire class of third-order
paramount matrices is six.
Remark 3: One should note that the theorem of Reichert [33],

which states that “any one-port network containing two reac-
tive elements and an arbitrary number of resistors is equiva-
lent to the one with two reactive elements and three resistors,”
assumes that values of reactive elements are arbitrary. The re-
duction in the number of resistors is partially due to the varia-
tion of reactive element values. In order to investigate synthesis
of one-port networks containing two reactive elements with re-
stricted values, which has important practical implications, the
results of this paper can be utilized.

V. NUMERICAL EXAMPLES

Example 1: Consider a paramount matrix with
, , , , , ,
which does not satisfy the condition of Lemma 5 for .
Furthermore, it is checked that the condition of Theorem 2 holds
with and Condition i) being satisfied. Therefore,
is realizable as the admittance of the configuration in Fig. 5,

where Terminals and constitute Port 1 with the current from
to , Terminals and constitute Port 2 with the current from
to , and Terminals and constitute Port 3 with the current

from to . The values of the elements satisfy , ,
, and .

Example 2: Consider a paramount matrix with
, , , , , and , which
does not satisfy the condition of Theorem 3. Furthermore, it is
checked that the condition of Lemma 5 holds for . There-
fore, is realizable as the admittance of a network whose net-
work graph containing four terminals and five elements, whose
port graph is a Lagrangian tree.
Example 3: Consider a paramount matrix with
, , , , , and ,
which neither satisfies the condition of Theorem 3 nor satisfies
the condition of Lemma 5 for . Furthermore, it is checked
that the condition of Theorem 5 holds with and
Condition 2-ii) being satisfied. Therefore, is realizable as the
admittance of the configuration in Fig. 9(b), where Terminals
and constitute Port 1 with the current from to , Terminals
and constitute Port 2 with the current from to , and Termi-
nals and constitute Port 3 with the current from to . The
values of the elements satisfy , , , ,
and .

VI. CONCLUSION

This paper has been concerned with the minimal realization
problem of three-port resistive networks. A necessary and suf-
ficient condition was derived for any real symmetric matrix to

be realizable as the admittance of four-terminal three-port resis-
tive networks with at most elements where .
Furthermore, necessary and sufficient conditions were obtained
for any paramount matrix to be realizable as the admittance of
three-port resistive networks with at most elements where

in Theorem 1 and Theorem 3
. Moreover, a necessary and sufficient condition was

derived for a paramount matrix that cannot be realized with
less than five elements to be realizable as the admittance of
three-port resistive networks with five elements in Theorem 9.
Finally, some numerical examples were presented for illustra-
tion. In practice, the realizability conditions are always tested
in the order from to to guarantee the minimality of
realizations.

APPENDIX A
PROOF OF THEOREM 2

Necessity: For Fig. 5, assume that Terminals and con-
stitute Port 1 with the current from to ; Terminals and
constitute Port 2 with the current from to ; Terminals and
constitute Port 3 with the current from to . The entries of
can be expressed as follows:

(3)

where . Since , , , , it
follows that , , , , . Furthermore, one can
check that and .
Moreover, other cases can be obtained by properly swapping

some of two ports and switching the polarity of some ports,
which correspond to a proper rearrangement of rows and cor-
responding columns and a finite number of cross-sign changes.
Condition 1 or 2 also holds for other cases.
Sufficiency: Let the values of elements as in Fig. 5 satisfy

(4)

(5)

(6)

(7)

Since it is assumed that is not realizable with less than four
elements, the condition of Lemma 5 does not hold for .
Together with paramountcy, one implies that , , .
Assume that and Condition i) holds. As-

suming that (resp. ), it follows from
(resp. ) that (resp.

). Then, together with (resp.
), one derives that (resp.

). This contradicts the assumption that
the condition of Lemma 5 does not hold for . Therefore,

and . After some cross-sign changes, one ob-
tains , and . Then, it follows that
and , implying that
and . From
and , one obtains that

(8)
(9)
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Then, it is implied that and
. Moreover, and

can also imply and
. Otherwise, would satisfy the condition of Lemma

5 for . Based on paramountcy of , one can prove that
and cannot both be negative.

Therefore, if , then exchanging the first and
third rows and the columns can yield without
altering all the previous conditions. Hence, . As
a consequence, the values of elements as expressed in (4)–(7)
must be positive and finite. By and (8), one can
verify that (3) must hold. Therefore, the given is realizable as
the required network.
Assume that and Condition i) holds. After

some cross-sign changes, one obtains , , and
. Since cannot be negative, it follows that at least

one of and is non-negative. If (resp.
), then (resp.

), which is equivalent to
(resp. ). Con-

sequently, (resp. ), indicating
that (resp. ). Therefore, together with the
assumption that the condition of Lemma 5 does not hold for

, we assert that , , ,
and . Therefore, and

, which further implies (8).
Then, . Supposing that ,
together with and one implies
that , , and ,
contradicting the condition that the condition of Lemma 5 does
not hold for . Hence, , indicating that

. As a consequence, the values of , ,
, and as expressed in (4)–(7) must be positive and finite.

By and (8), one can verify that (3) must hold.
Therefore, the given is realizable as the required network.
Besides, if satisfies other cases of Condition 1 or 2, then

properly arranging the rows and columns of can always yield
one of the above two cases. Now, the theorem is proved.

APPENDIX B
PROOF OF THEOREM 4

Necessity: For Fig. 9(a), assume that Terminals and con-
stitute Port 1 with the current from to ; Terminals and
constitute Port 2 with the current from to ; Terminals and
constitute Port 3 with the current from to . Then,

(10)

where . Since , , , , ,
it follows that , , , , . If , then

,
, ,

and , implying that Condition
1 must hold. If , then ,

,
,

, and
, implying that Condition 2 must hold.

Other cases can be obtained by properly swapping some of
two ports and switching the polarity of some ports, which cor-
respond to a proper rearrangement of rows and corresponding

columns and a finite number of cross-sign changes. It is noted
that Condition 1 or 2 also holds for other cases.
Sufficiency: Let the values of elements as in Fig. 9(a) satisfy

(11)

(12)

(13)

(14)

(15)

Since it is assumed that the condition of Theorem 3 does not
hold, neither the condition of Lemma 5 for nor that of
Theorem 2 holds. Together with the condition of paramountcy,
one implies that , , . By Lemma 6, it is implied
that at most one of , , and is zero.
Assume that and Condition 1-i) holds. One

can always guarantee by properly inter-
changing the first and second rows and columns of if neces-
sary. After some cross-sign changes one obtains , ,
and . Since at most one of , , and is zero,
it follows that , , ,

, and . Moreover,
, indicating that

. From , it can be implied that
, since the condition of Lemma 5 does not hold for

. Moreover, since would contradict the
assumption that the condition of Theorem 2 does not hold, it
follows that together with the
condition of paramountcy. Therefore, yields

(16)

further implying that . As a conse-
quence, the values of elements as expressed in (11)–(15)must be
positive and finite. Moreover, (11)–(15) and
imply (10). Therefore, the given is realizable as the required
network.
Assume that and Condition 2-i) holds. After

some cross-sign changes, one obtains and
. Moreover, one makes

by properly interchanging the first and third rows and columns
of if necessary, which does not alter the assumption. To-
gether with the condition of paramountcy, it follows that

and , which im-
plies that . Since the con-
dition of Lemma 5 does not hold for , it follows that

, implying that . Consid-
ering that would contradict the assumption
that the condition of Theorem 2 does not hold, it follows that

together with the condition
of paramountcy. Since yields (16), it follows
that . As a consequence, the values of
elements as expressed in (11)–(15) must be positive and finite.
Moreover, (11)–(15) and imply (10). There-
fore, the given is realizable as the required network.
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Besides, if satisfies other cases of Condition 1 or 2, then
properly arranging the rows and corresponding columns of
can always yield one of the above two cases.
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