3 research outputs found

    Solving Aircraft-Sequencing Problem Based on Bee Evolutionary Genetic Algorithm and Clustering Method

    No full text

    Improved versions of the bees algorithm for global optimisation

    Get PDF
    This research focuses on swarm-based optimisation algorithms, specifically the Bees Algorithm. The Bees Algorithm was inspired by the foraging behaviour of honey bees in nature. It employs a combination of exploration and exploitation to find the solutions of optimisation problems. This thesis presents three improved versions of the Bees Algorithm aimed at speeding up its operation and facilitating the location of the global optimum. For the first improvement, an algorithm referred to as the Nelder and Mead Bees Algorithm (NMBA) was developed to provide a guiding direction during the neighbourhood search stage. The second improved algorithm, named the recombination-based Bees Algorithm (rBA), is a variant of the Bees Algorithm that utilises a recombination operator between the exploited and abandoned sites to produce new candidates closer to optimal solutions. The third improved Bees Algorithm, called the guided global best Bees Algorithm (gBA), introduces a new neighbourhood shrinking strategy based on the best solution so far for a more effective exploitation search and develops a new bee recruitment mechanism to reduce the number of parameters. The proposed algorithms were tested on a set of unconstrained numerical functions and constrained mechanical engineering design problems. The performance of the algorithms was compared with the standard Bees Algorithm and other swarm based algorithms. The results showed that the improved Bees Algorithms performed better than the standard Bees Algorithm and other algorithms on most of the problems tested. Furthermore, the algorithms also involve no additional parameters and a reduction on the number of parameters as well

    Approximate Algorithms for the Combined arrival-Departure Aircraft Sequencing and Reactive Scheduling Problems on Multiple Runways

    Get PDF
    The problem addressed in this dissertation is the Aircraft Sequencing Problem (ASP) in which a schedule must be developed to determine the assignment of each aircraft to a runway, the appropriate sequence of aircraft on each runway, and their departing or landing times. The dissertation examines the ASP over multiple runways, under mixed mode operations with the objective of minimizing the total weighted tardiness of aircraft landings and departures simultaneously. To prevent the dangers associated with wake-vortex effects, separation times enforced by Aviation Administrations (e.g., FAA) are considered, adding another level of complexity given that such times are sequence-dependent. Due to the problem being NP-hard, it is computationally difficult to solve large scale instances in a reasonable amount of time. Therefore, three greedy algorithms, namely the Adapted Apparent Tardiness Cost with Separation and Ready Times (AATCSR), the Earliest Ready Time (ERT) and the Fast Priority Index (FPI) are proposed. Moreover, metaheuristics including Simulated Annealing (SA) and the Metaheuristic for Randomized Priority Search (Meta-RaPS) are introduced to improve solutions initially constructed by the proposed greedy algorithms. The performance (solution quality and computational time) of the various algorithms is compared to the optimal solutions and to each other. The dissertation also addresses the Aircraft Reactive Scheduling Problem (ARSP) as air traffic systems frequently encounter various disruptions due to unexpected events such as inclement weather, aircraft failures or personnel shortages rendering the initial plan suboptimal or even obsolete in some cases. This research considers disruptions including the arrival of new aircraft, flight cancellations and aircraft delays. ARSP is formulated as a multi-objective optimization problem in which both the schedule\u27s quality and stability are of interest. The objectives consist of the total weighted start times (solution quality), total weighted start time deviation, and total weighted runway deviation (instability measures). Repair and complete regeneration approximate algorithms are developed for each type of disruptive events. The algorithms are tested against difficult benchmark problems and the solutions are compared to optimal solutions in terms of solution quality, schedule stability and computational time
    corecore