461 research outputs found

    More Than 1700 Years of Word Equations

    Full text link
    Geometry and Diophantine equations have been ever-present in mathematics. Diophantus of Alexandria was born in the 3rd century (as far as we know), but a systematic mathematical study of word equations began only in the 20th century. So, the title of the present article does not seem to be justified at all. However, a linear Diophantine equation can be viewed as a special case of a system of word equations over a unary alphabet, and, more importantly, a word equation can be viewed as a special case of a Diophantine equation. Hence, the problem WordEquations: "Is a given word equation solvable?" is intimately related to Hilbert's 10th problem on the solvability of Diophantine equations. This became clear to the Russian school of mathematics at the latest in the mid 1960s, after which a systematic study of that relation began. Here, we review some recent developments which led to an amazingly simple decision procedure for WordEquations, and to the description of the set of all solutions as an EDT0L language.Comment: The paper will appear as an invited address in the LNCS proceedings of CAI 2015, Stuttgart, Germany, September 1 - 4, 201

    Knapsack in Graph Groups, HNN-Extensions and Amalgamated Products

    Get PDF
    It is shown that the knapsack problem, which was introduced by Myasnikov et al. for arbitrary finitely generated groups, can be solved in NP for graph groups. This result even holds if the group elements are represented in a compressed form by SLPs, which generalizes the classical NP-completeness result of the integer knapsack problem. We also prove general transfer results: NP-membership of the knapsack problem is passed on to finite extensions, HNN-extensions over finite associated subgroups, and amalgamated products with finite identified subgroups

    Orbit decidability and the conjugacy problem for some extensions of groups

    No full text
    Given a short exact sequence of groups with certain conditions, 1 ? F ? G ? H ? 1, weprove that G has solvable conjugacy problem if and only if the corresponding action subgroupA 6 Aut(F) is orbit decidable. From this, we deduce that the conjugacy problem is solvable,among others, for all groups of the form Z2?Fm, F2?Fm, Fn?Z, and Zn?A Fm with virtually solvable action group A 6 GLn(Z). Also, we give an easy way of constructing groups of the form Z4?Fn and F3?Fn with unsolvable conjugacy problem. On the way, we solve the twisted conjugacy problem for virtually surface and virtually polycyclic groups, and give an example of a group with solvable conjugacy problem but unsolvable twisted conjugacy problem. As an application, an alternative solution to the conjugacy problem in Aut(F2) is given
    corecore