3 research outputs found

    Solutions of Word Equations over Partially Commutative Structures

    Get PDF
    We give NSPACE(n log n) algorithms solving the following decision problems. Satisfiability: Is the given equation over a free partially commutative monoid with involution (resp. a free partially commutative group) solvable? Finiteness: Are there only finitely many solutions of such an equation? PSPACE algorithms with worse complexities for the first problem are known, but so far, a PSPACE algorithm for the second problem was out of reach. Our results are much stronger: Given such an equation, its solutions form an EDT0L language effectively representable in NSPACE(n log n). In particular, we give an effective description of the set of all solutions for equations with constraints in free partially commutative monoids and groups

    Languages, groups and equations

    Full text link
    The survey provides an overview of the work done in the last 10 years to characterise solutions to equations in groups in terms of formal languages. We begin with the work of Ciobanu, Diekert and Elder, who showed that solutions to systems of equations in free groups in terms of reduced words are expressible as EDT0L languages. We provide a sketch of their algorithm, and describe how the free group results extend to hyperbolic groups. The characterisation of solutions as EDT0L languages is very robust, and many group constructions preserve this, as shown by Levine. The most recent progress in the area has been made for groups without negative curvature, such as virtually abelian, the integral Heisenberg group, or the soluble Baumslag-Solitar groups, where the approaches to describing the solutions are different from the negative curvature groups. In virtually abelian groups the solutions sets are in fact rational, and one can obtain them as mm-regular sets. In the Heisenberg group producing the solutions to a single equation reduces to understanding the solutions to quadratic Diophantine equations and uses number theoretic techniques. In the Baumslag-Solitar groups the methods are combinatorial, and focus on the interplay of normal forms to solve particular classes of equations. In conclusion, EDT0L languages give an effective and simple combinatorial characterisation of sets of seemingly high complexity in many important classes of groups.Comment: 26 page

    Quadratic Diophantine equations, the Heisenberg group and formal languages

    Full text link
    We express the solutions to quadratic equations with two variables in the ring of integers using EDT0L languages. We use this to show that EDT0L languages can be used to describe the solutions to one-variable equations in the Heisenberg group. This is done by reducing the question of solving a one-variable equation in the Heisenberg group to solving an equation in the ring of integers, exploiting the strong link between the ring of integers and nilpotent groups.Comment: 33 page
    corecore