2,403 research outputs found

    Schaefer's theorem for graphs

    Full text link
    Schaefer's theorem is a complexity classification result for so-called Boolean constraint satisfaction problems: it states that every Boolean constraint satisfaction problem is either contained in one out of six classes and can be solved in polynomial time, or is NP-complete. We present an analog of this dichotomy result for the propositional logic of graphs instead of Boolean logic. In this generalization of Schaefer's result, the input consists of a set W of variables and a conjunction \Phi\ of statements ("constraints") about these variables in the language of graphs, where each statement is taken from a fixed finite set \Psi\ of allowed quantifier-free first-order formulas; the question is whether \Phi\ is satisfiable in a graph. We prove that either \Psi\ is contained in one out of 17 classes of graph formulas and the corresponding problem can be solved in polynomial time, or the problem is NP-complete. This is achieved by a universal-algebraic approach, which in turn allows us to use structural Ramsey theory. To apply the universal-algebraic approach, we formulate the computational problems under consideration as constraint satisfaction problems (CSPs) whose templates are first-order definable in the countably infinite random graph. Our method to classify the computational complexity of those CSPs is based on a Ramsey-theoretic analysis of functions acting on the random graph, and we develop general tools suitable for such an analysis which are of independent mathematical interest.Comment: 54 page

    P?=NP as minimization of degree 4 polynomial, integration or Grassmann number problem, and new graph isomorphism problem approaches

    Full text link
    While the P vs NP problem is mainly approached form the point of view of discrete mathematics, this paper proposes reformulations into the field of abstract algebra, geometry, fourier analysis and of continuous global optimization - which advanced tools might bring new perspectives and approaches for this question. The first one is equivalence of satisfaction of 3-SAT problem with the question of reaching zero of a nonnegative degree 4 multivariate polynomial (sum of squares), what could be tested from the perspective of algebra by using discriminant. It could be also approached as a continuous global optimization problem inside [0,1]n[0,1]^n, for example in physical realizations like adiabatic quantum computers. However, the number of local minima usually grows exponentially. Reducing to degree 2 polynomial plus constraints of being in {0,1}n\{0,1\}^n, we get geometric formulations as the question if plane or sphere intersects with {0,1}n\{0,1\}^n. There will be also presented some non-standard perspectives for the Subset-Sum, like through convergence of a series, or zeroing of 02πicos(φki)dφ\int_0^{2\pi} \prod_i \cos(\varphi k_i) d\varphi fourier-type integral for some natural kik_i. The last discussed approach is using anti-commuting Grassmann numbers θi\theta_i, making (Adiag(θi))n(A \cdot \textrm{diag}(\theta_i))^n nonzero only if AA has a Hamilton cycle. Hence, the P\neNP assumption implies exponential growth of matrix representation of Grassmann numbers. There will be also discussed a looking promising algebraic/geometric approach to the graph isomorphism problem -- tested to successfully distinguish strongly regular graphs with up to 29 vertices.Comment: 19 pages, 8 figure

    Meta-Kernelization with Structural Parameters

    Full text link
    Meta-kernelization theorems are general results that provide polynomial kernels for large classes of parameterized problems. The known meta-kernelization theorems, in particular the results of Bodlaender et al. (FOCS'09) and of Fomin et al. (FOCS'10), apply to optimization problems parameterized by solution size. We present the first meta-kernelization theorems that use a structural parameters of the input and not the solution size. Let C be a graph class. We define the C-cover number of a graph to be a the smallest number of modules the vertex set can be partitioned into, such that each module induces a subgraph that belongs to the class C. We show that each graph problem that can be expressed in Monadic Second Order (MSO) logic has a polynomial kernel with a linear number of vertices when parameterized by the C-cover number for any fixed class C of bounded rank-width (or equivalently, of bounded clique-width, or bounded Boolean width). Many graph problems such as Independent Dominating Set, c-Coloring, and c-Domatic Number are covered by this meta-kernelization result. Our second result applies to MSO expressible optimization problems, such as Minimum Vertex Cover, Minimum Dominating Set, and Maximum Clique. We show that these problems admit a polynomial annotated kernel with a linear number of vertices

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page
    corecore