4 research outputs found

    A Multi-Objective Economic Load Dispatch Considering Accessibility of Wind Power with Here-And-Now Approach

    Get PDF
    The major problem of wind turbines is the great variability of wind power production. The dynamic change of the wind speed returns the quantity of the power injected to networks. Therefore, wind–thermal generation scheduling problem plays a key role to implement clean power producers in a competitive environment. In deregulated power systems, the scheduling problem has various objectives than in a traditional system which should be considered in economic scheduling. In this paper, a Multi-Objective Economic Load Dispatch (MOELD) model is developed for the system consisting of both thermal generators and wind turbines. Using two optimization methods, Sequential Quadratic Programming (SQP) and Particle Swarm Optimization (PSO), the system is optimally scheduled. The objective functions are total emission and total profit of units. The probability of stochastic wind power is included in the model as a constraint. This strategy, referred to as the Here-and-Now (HN) approach, avoids the probabilistic infeasibility appearing in conventional models. Based on the utilized model, the effect of stochastic wind speed on the objective functions can be readily assessed. Also a Total Index (TI) is presented to evaluate the simulation results. Also, the results show preference of PSO method to combine with HN approach

    A Unit Commitment Model with Implicit Reserve Constraint Based on an Improved Artificial Fish Swarm Algorithm

    Get PDF
    An implicit reserve constraint unit commitment (IRCUC) model is presented in this paper. Different from the traditional unit commitment (UC) model, the constraint of spinning reserve is not given explicitly but implicitly in a trade-off between the production cost and the outage loss. An analytical method is applied to evaluate the reliability of UC solutions and to estimate the outage loss. The stochastic failures of generating units and uncertainties of load demands are considered while assessing the reliability. The artificial fish swarm algorithm (AFSA) is employed to solve this proposed model. In addition to the regular operation, a mutation operator (MO) is designed to enhance the searching performance of the algorithm. The feasibility of the proposed method is demonstrated from 10 to 100 units system, and the testing results are compared with those obtained by genetic algorithm (GA), particle swarm optimization (PSO), and ant colony optimization (ACO) in terms of total production cost and computational time. The simulation results show that the proposed method is capable of obtaining higher quality solutions

    Advanced Signal Processing Techniques Applied to Power Systems Control and Analysis

    Get PDF
    The work published in this book is related to the application of advanced signal processing in smart grids, including power quality, data management, stability and economic management in presence of renewable energy sources, energy storage systems, and electric vehicles. The distinct architecture of smart grids has prompted investigations into the use of advanced algorithms combined with signal processing methods to provide optimal results. The presented applications are focused on data management with cloud computing, power quality assessment, photovoltaic power plant control, and electrical vehicle charge stations, all supported by modern AI-based optimization methods
    corecore