40,227 research outputs found

    The Bounded L2 Curvature Conjecture

    Full text link
    This is the main paper in a sequence in which we give a complete proof of the bounded L2L^2 curvature conjecture. More precisely we show that the time of existence of a classical solution to the Einstein-vacuum equations depends only on the L2L^2-norm of the curvature and a lower bound on the volume radius of the corresponding initial data set. We note that though the result is not optimal with respect to the standard scaling of the Einstein equations, it is nevertheless critical with respect to its causal geometry. Indeed, L2L^2 bounds on the curvature is the minimum requirement necessary to obtain lower bounds on the radius of injectivity of causal boundaries. We note also that, while the first nontrivial improvements for well posedness for quasilinear hyperbolic systems in spacetime dimensions greater than 1+1 (based on Strichartz estimates) were obtained in [Ba-Ch1] [Ba-Ch2] [Ta1] [Ta2] [Kl-R1] and optimized in [Kl-R2] [Sm-Ta], the result we present here is the first in which the full structure of the quasilinear hyperbolic system, not just its principal part, plays a crucial role. To achieve our goals we recast the Einstein vacuum equations as a quasilinear so(3,1)so(3,1)-valued Yang-Mills theory and introduce a Coulomb type gauge condition in which the equations exhibit a specific new type of \textit{null structure} compatible with the quasilinear, covariant nature of the equations. To prove the conjecture we formulate and establish bilinear and trilinear estimates on rough backgrounds which allow us to make use of that crucial structure. These require a careful construction and control of parametrices including L2L^2 error bounds which is carried out in [Sz1]-[Sz4], as well as a proof of sharp Strichartz estimates for the wave equation on a rough background which is carried out in \cite{Sz5}.Comment: updated version taking into account the remarks of the refere

    Fusion rules for Quantum Transfer Matrices as a Dynamical System on Grassmann Manifolds

    Full text link
    We show that the set of transfer matrices of an arbitrary fusion type for an integrable quantum model obey these bilinear functional relations, which are identified with an integrable dynamical system on a Grassmann manifold (higher Hirota equation). The bilinear relations were previously known for a particular class of transfer matrices corresponding to rectangular Young diagrams. We extend this result for general Young diagrams. A general solution of the bilinear equations is presented.Comment: LaTex (MPLA macros included) 10 pages, 1 figure, included in the tex

    A primal-dual formulation for certifiable computations in Schubert calculus

    Full text link
    Formulating a Schubert problem as the solutions to a system of equations in either Pl\"ucker space or in the local coordinates of a Schubert cell typically involves more equations than variables. We present a novel primal-dual formulation of any Schubert problem on a Grassmannian or flag manifold as a system of bilinear equations with the same number of equations as variables. This formulation enables numerical computations in the Schubert calculus to be certified using algorithms based on Smale's \alpha-theory.Comment: 21 page

    A novel multi-component generalization of the short pulse equation and its multisoliton solutions

    Get PDF
    We propose a novel multi-component system of nonlinear equations that generalizes the short pulse (SP) equation describing the propagation of ultra-short pulses in optical fibers. By means of the bilinear formalism combined with a hodograph transformation, we obtain its multi-soliton solutions in the form of a parametric representation. Notably, unlike the determinantal solutions of the SP equation, the proposed system is found to exhibit solutions expressed in terms of pfaffians. The proof of the solutions is performed within the framework of an elementary theory of determinants. The reduced 2-component system deserves a special consideration. In particular, we show by establishing a Lax pair that the system is completely integrable. The properties of solutions such as loop solitons and breathers are investigated in detail, confirming their solitonic behavior. A variant of the 2-component system is also discussed with its multisoliton solutions.Comment: Minor correction

    Integrable discretization of recursion operators and unified bilinear forms to soliton hierarchies

    Full text link
    In this paper, we give a procedure of how to discretize the recursion operators by considering unified bilinear forms of integrable hierarchies. As two illustrative examples, the unified bilinear forms of the AKNS hierarchy and the KdV hierarchy are presented from their recursion operators. Via the compatibility between soliton equations and their auto-B\"acklund transformations, the bilinear integrable hierarchies are discretized and the discrete recursion operators are obtained. The discrete recursion operators converge to the original continuous forms after a standard limit.Comment: 11Page

    N-Dark-Dark Solitons in the Generally Coupled Nonlinear Schroedinger Equations

    Full text link
    N-dark-dark solitons in the generally coupled integrable NLS equations are derived by the KP-hierarchy reduction method. These solitons exist when nonlinearities are all defocusing, or both focusing and defocusing nonlinearities are mixed. When these solitons collide with each other, energies in both components of the solitons completely transmit through. This behavior contrasts collisions of bright-bright solitons in similar systems, where polarization rotation and soliton reflection can take place. It is also shown that in the mixed-nonlinearity case, two dark-dark solitons can form a stationary bound state.Comment: 26 pages, 3 figure
    corecore