215 research outputs found

    Approximating Bin Packing within O(log OPT * log log OPT) bins

    Full text link
    For bin packing, the input consists of n items with sizes s_1,...,s_n in [0,1] which have to be assigned to a minimum number of bins of size 1. The seminal Karmarkar-Karp algorithm from '82 produces a solution with at most OPT + O(log^2 OPT) bins. We provide the first improvement in now 3 decades and show that one can find a solution of cost OPT + O(log OPT * log log OPT) in polynomial time. This is achieved by rounding a fractional solution to the Gilmore-Gomory LP relaxation using the Entropy Method from discrepancy theory. The result is constructive via algorithms of Bansal and Lovett-Meka

    Clique versus Independent Set

    Get PDF
    Yannakakis' Clique versus Independent Set problem (CL-IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn)O(n^{\log n}), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cHc_H for which we find a O(ncH)O(n^{c_H}) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck)O(n^{c_k}) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cHc_H is of order O(HlogH)O(|H| \log |H|) resulting from Vapnik-Chervonenkis dimension, and on the other side, ckc_k is exponential. One of the main reason why Yannakakis' CL-IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon-Saks-Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn)O(n^{\log n}) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator

    Balanced Crown Decomposition for Connectivity Constraints

    Get PDF
    We introduce the balanced crown decomposition that captures the structure imposed on graphs by their connected induced subgraphs of a given size. Such subgraphs are a popular modeling tool in various application areas, where the non-local nature of the connectivity condition usually results in very challenging algorithmic tasks. The balanced crown decomposition is a combination of a crown decomposition and a balanced partition which makes it applicable to graph editing as well as graph packing and partitioning problems. We illustrate this by deriving improved approximation algorithms and kernelization for a variety of such problems. In particular, through this structure, we obtain the first constant-factor approximation for the Balanced Connected Partition (BCP) problem, where the task is to partition a vertex-weighted graph into k connected components of approximately equal weight. We derive a 3-approximation for the two most commonly used objectives of maximizing the weight of the lightest component or minimizing the weight of the heaviest component
    corecore