2,284,274 research outputs found
Light Scattering from Nonequilibrium Concentration Fluctuations in a Polymer solution
We have performed light-scattering measurements in dilute and semidilute
polymer solutions of polystyrene in toluene when subjected to stationary
temperature gradients. Five solutions with concentrations below and one
solution with a concentration above the overlap concentration were
investigated. The experiments confirm the presence of long-range nonequilibrium
concentration fluctuations which are proportional to , where
is the applied temperature gradient and is the wave number of
the fluctuations. In addition, we demonstrate that the strength of the
nonequilibrium concentration fluctuations, observed in the dilute and
semidilute solution regime, agrees with theoretical values calculated from
fluctuating hydrodynamics. Further theoretical and experimental work will be
needed to understand nonequilibrium fluctuations in polymer solutions at higher
concentrations.Comment: revtex, 16 pages, 7 figures. J. Chem. Phys., to appea
Influences of chloride immersion on zeta potential and chloride in concentration of cement-based materials
In this paper, the zeta potential of freshly mixed cement paste and hardened cement pastes, as well as the concentration index, was measured. The influences of chloride concentration in mixing water and slag content on zeta potential of freshly mixed pastes were studied. A proposed model was expressed to explain the relationship of zeta potential and concentration index of hardened cement pastes immersed in chloride solution. The results showed that the increase of chloride concentration in mixing water and slag replacement improved the zeta potential of freshly mixed cement, the hydration rate and concentration of ions in mixed water affects the zeta potential. With the increase of chloride concentration in soaking solution, the chloride concentration index and zeta potential of hardened cement paste all gradually decreased. The addition of slag gave some changes on chloride in concentration and zeta potential. The relationship among chloride concentration index, chloride concentration in soaking solution and slag replacement revealed by Gouy-Chapman model was in good agreement with the measured results
Changes of pore structure and chloride content in cement pastes after pore solution expression
Pore solution expression is a widely accepted approach to extract pore solution of cement-based materials by appllying high pressure. In this study, the variations of pore solution distribution and chloride content in cement pastes before and after pore solution expression were examined. The results showed that the value of chloride concentration index N-c were mostly higher than 1.0 for cement pastes immersed in NaCl solution, and decreased with the chloride concentration of soaking solution and water-to-binder (w/b) ratio. During the pore solution expression, the pores larger than 40 nm were totally removed and the porosity of smaller pore was decreased. Based on a proposed physical model on structure of cement paste, the value of N-c was calculated according to the variations of pore structure and chloride content during pore solution expression. The calculated results showed similar trend as the experimental results obtained by pore solution expression method
Effects of electrospinning parameters on polyacrylonitrile nanofiber diameter: an investigation by response surface methodology
Effects of material and process parameters on the diameter of electrospun polyacrylonitrile fibers were experimentally investigated. Response surface methodology (RSM) was utilized to design the experiments at the settings of solution concentration, voltage and the collector distance. It also imparted the evaluation of the significance of each parameter on the resultant fiber diameter. The investigations were carried out in the two-variable process domains of several collector distances as applied voltage and the solution concentration were varied at a fixed polymer molecular weight. The mean diameter and coefficient of variation were modeled by polynomial response surfaces as functions of solution concentration and voltage at each collector distance. Effect of applied voltage in micron-scale fiber diameter was observed to be almost negligible when solution concentration and collector distance were high. However, all three factors were found statistically significant in the production of nano-scale fibers. The response surface predictions revealed the parameter interactions for the resultant fiber diameter, and showed that there is a negative correlation between the mean diameter and coefficient of variation for the fiber diameter. A sub-domain of the parameter space consisting of the solution concentration, applied voltage and collector distance, was suggested for the potential nano-scale fiber production
Non-monotonic swelling of a macroion due to correlation-induced charge inversion
It is known that a large, charged body immersed in a solution of multivalent
counterions may undergo charge inversion as the counterions adsorb to its
surface. We use the theory of charge inversion to examine the case of a
deformable, porous macroion which may adsorb multivalent ions into its bulk to
form a three-dimensional strongly-correlated liquid. This adsorption may lead
to non-monotonic changes in the size of the macroion as multivalent ions are
added to the solution. The macroion first shrinks as its bare charge is
screened and then reswells as the adsorbed ions invert the sign of the net
charge. We derive a value for the outward pressure experienced by such a
macroion as a function of the ion concentration in solution. We find that for
small deviations in the concentration of multivalent ions away from the neutral
point (where the net charge of the body is zero), the swollen size grows
parabolically with the logarithm of the ratio of multivalent ion concentration
to the concentration at the neutral point.Comment: 7 pages, 4 figures; typos fixed; final published versio
Investigation on influential factors on chloride concentration index of cement-based materials by pore solution expression method
In this study, the effects of different factors on chloride concentration index (N-c) of cement paste were studied. The factors including chloride concentration in soaking solution, slag replacement, external applied voltage and cation ions of soaking solution were all studied from the electrical double layer (EDL) properties point of view. Zeta potential and proton Nuclear Magnetic Resonance (H-1 NMR) measurements were conducted to investigate the properties of electrical double layer for cement paste specimens and their effects on the value of chloride concentration index. The results showed that these factors all impacted effects on chloride concentration in electrical double layer and chloride concentration index. The properties of electrical double layer including chloride distribution and thickness of electrical double layer mainly controlled the phenomenon of "chloride concentrate" and value of chloride concentration index. As the increase of zeta potential and electrical double layer thickness, the content of chloride ions in electrical double layer and the value of chloride concentration index gradually increased. (C) 2019 Elsevier Ltd. All rights reserved
AC impedance spectroscopy characteristics of chloride-exposed cement pastes
In this paper, the characteristics of AC impedance spectroscopy of cement paste immersed in chloride solution were measured and analyzed with a proposed equivalent circuit model. The elements in the proposed equivalent circuit, including the resistance of interface between electrode and specimens, resistance of continuous and discontinuous pore, capacitance of solid phase and electrical double layer (EDL) were discussed. The results showed that the resistance of interface between electrode and testing specimen was much lower than that of cement paste. With the increase of chloride concentration in the soaking solution, the resistance of continuous gradually decreased due to the higher conductivity of chloride solution. Stripped out the impacts of concentration of pore solution on resistance of pores, the resistance of continuous pore increased firstly due to the decrease of continuous pore volume from the formation of Friedel's salt. However, the resistance of discontinuous pores gradually decreased with the increase of soaking solution concentration due to the transformation of continuous pores to discontinuous pores. The reaction between chloride ions and hydration products and formation of Friedel's salt decreased the porosity of cement pastes and led to higher capacitance of solid phase. Based on an idealized two-plate capacitor model for EDL, the thickness of EDL was calculated from the measured capacitance. The decrease of EDL thickness with chloride concentration in soaking solution was in agreement with the results of chloride contents in EDL obtained from pore solution expression test. (C) 2019 Elsevier Ltd. All rights reserved
Bright-like soliton solution in quasi-one-dimensional BEC in third order on interaction radius
Nonlinear Schr\"{o}dinger equations and corresponding quantum hydrodynamic
(QHD) equations are widely used in studying ultracold boson-fermion mixtures
and superconductors. In this article, we show that a more exact account of
interaction in Bose-Einstein condensate (BEC), in comparison with the
Gross-Pitaevskii (GP) approximation, leads to the existence of a new type of
solitons. We use a set of QHD equations in the third order by the interaction
radius (TOIR), which corresponds to the GP equation in a first order by the
interaction radius. The solution for the soliton in a form of expression for
the particle concentration is obtained analytically. The conditions of
existence of the soliton are studied. It is shown what solution exists if the
interaction between the particles is repulsive. Particle concentration of order
of - has been achieved experimentally for the BEC,
the solution exists if the scattering length is of the order of 1 m, which
can be reached using the Feshbach resonance. It is one of the limit case of
existence of new solution. The corresponding scattering length decrease with
the increasing of concentration of particles. The investigation of effects in
the TOIR approximation gives a more detail information on interaction
potentials between the atoms and can be used for a more detail investigation
into the potential structure.Comment: 7 pages, 3 figure
Electrochemical polymerisation of phenol in aqueous solution on a Ta/PbO2 anode
This paper deals with the treatment of aqueous phenol solutions using an electrochemical technique. Phenol can be partly eliminated from aqueous solution by electrochemically initiated polymerisation. Galvanostatic electrolyses of phenol solutions at concentration up to 0.1 mol dm−3 were carried out on a Ta/PbO2 anode. The polymers formed are insoluble in acidic medium but soluble in alkaline. These polymers were filtered and then dissolved in aqueous solution of sodium hydroxide (1 mol dm−3). The polymers formed were quantified by total organic carbon (TOC) measurement. It was found that the conversion of phenol into polymers increases as a function of initial concentration, anodic current density, temperature, and solution pH. The percentage of phenol polymerised can reach 15%
- …
