4,714 research outputs found

    Mathematical programs with complementarity constraints: convergence properties of a smoothing method

    Get PDF
    In this paper, optimization problems PP with complementarity constraints are considered. Characterizations for local minimizers xˉ\bar{x} of PP of Orders 1 and 2 are presented. We analyze a parametric smoothing approach for solving these programs in which PP is replaced by a perturbed problem PτP_{\tau} depending on a (small) parameter τ\tau. We are interested in the convergence behavior of the feasible set Fτ\cal{F}_{\tau} and the convergence of the solutions xˉτ\bar{x}_{\tau} of PτP_{\tau} for τ0.\tau\to 0. In particular, it is shown that, under generic assumptions, the solutions xˉτ\bar{x}_{\tau} are unique and converge to a solution xˉ\bar{x} of PP with a rate O(τ)\cal{O}(\sqrt{\tau}). Moreover, the convergence for the Hausdorff distance d(Fτd(\cal{F}_{\tau}, F)\cal{F}) between the feasible sets of PτP_{\tau} and PP is of order O(τ)\cal{O}(\sqrt{\tau})

    On the local stability of semidefinite relaxations

    Full text link
    We consider a parametric family of quadratically constrained quadratic programs (QCQP) and their associated semidefinite programming (SDP) relaxations. Given a nominal value of the parameter at which the SDP relaxation is exact, we study conditions (and quantitative bounds) under which the relaxation will continue to be exact as the parameter moves in a neighborhood around the nominal value. Our framework captures a wide array of statistical estimation problems including tensor principal component analysis, rotation synchronization, orthogonal Procrustes, camera triangulation and resectioning, essential matrix estimation, system identification, and approximate GCD. Our results can also be used to analyze the stability of SOS relaxations of general polynomial optimization problems.Comment: 23 pages, 3 figure

    Simulation-Based Solution of Stochastic Mathematical Programs with Complementarity Constraints: Sample-Path Analysis

    Get PDF
    We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated.Such programs can be used for modeling average or steady-state behavior of complex stochastic systems.Recently, simulation-based methods have been successfully used for solving challenging stochastic optimization problems and equilibrium models.Here we broaden the applicability of so-called the sample-path method to include the solution of certain stochastic mathematical programs with equilibrium constraints.The convergence analysis of sample-path methods rely heavily on stability conditions.We first review necessary sensitivity results, then describe the method, and provide sufficient conditions for its almost-sure convergence.Alongside we provide a complementary sensitivity result for the corresponding deterministic problems.In addition, we also provide a unifying discussion on alternative set of sufficient conditions, derive a complementary result regarding the analysis of stochastic variational inequalities, and prove the equivalence of two different regularity conditions.stochastic processes;mathematics;stability;simulation;regulations;general equilibrium

    Simulation-based solution of stochastic mathematical programs with complementarity constraints: Sample-path analysis

    Get PDF
    We consider a class of stochastic mathematical programs with complementarity constraints, in which both the objective and the constraints involve limit functions or expectations that need to be estimated or approximated. Such programs can be used for modeling \\average" or steady-state behavior of complex stochastic systems. Recently, simulation-based methods have been successfully used for solving challenging stochastic optimization problems and equilibrium models. Here we broaden the applicability of so-called the sample-path method to include the solution of certain stochastic mathematical programs with equilibrium constraints. The convergence analysis of sample-path methods rely heavily on stability conditions. We first review necessary sensitivity results, then describe the method, and provide sufficient conditions for its almost-sure convergence. Alongside we provide a complementary sensitivity result for the corresponding deterministic problems. In addition, we also provide a unifying discussion on alternative set of sufficient conditions, derive a complementary result regarding the analysis of stochastic variational inequalities, and prove the equivalence of two different regularity conditions.simulation;mathematical programs with equilibrium constraints;stability;regularity conditions;sample-path methods;stochastic mathematical programs with complementarity constraints

    Including Social Nash Equilibria in Abstract Economies

    Get PDF
    We consider quasi-variational problems (variational problems having constraint sets depending on their own solutions) which appear in concrete economic models such as social and economic networks, financial derivative models, transportation network congestion and traffic equilibrium. First, using an extension of the classical Minty lemma, we show that new upper stability results can be obtained for parametric quasi-variational and linearized quasi-variational problems, while lower stability, which plays a fundamental role in the investigation of hierarchical problems, cannot be achieved in general, even on very restrictive conditions. Then, regularized problems are considered allowing to introduce approximate solutions for the above problems and to investigate their lower and upper stability properties. We stress that the class of quasi-variational problems include social Nash equilibrium problems in abstract economies, so results about approximate Nash equilibria can be easily deduced.quasi-variational, social Nash equilibria, approximate solution, closed map, lower semicontinuous map, upper stability, lower stability

    On generalized semi-infinite optimization and bilevel optimization

    Get PDF
    The paper studies the connections and differences between bilevel problems (BL) and generalized semi-infinite problems (GSIP). Under natural assumptions (GSIP) can be seen as a special case of a (BL). We consider the so-called reduction approach for (BL) and (GSIP) leading to optimality conditions and Newton-type methods for solving the problems. We show by a structural analysis that for (GSIP)-problems the regularity assumptions for the reduction approach can be expected to hold generically at a solution but for general (BL)-problems not. The genericity behavior of (BL) and (GSIP) is in particular studied for linear problems
    corecore