102,665 research outputs found

    Network Traffic Classification using Machine Learning for Software Defined Networks

    Get PDF
    The recent development in industry automation and connected devices made a huge demand for network resources. Traditional networks are becoming less effective to handle this large number of traffic generated by these technologies. At the same time, Software defined networking (SDN) introduced a programmable and scalable networking solution that enables Machine Learning (ML) applications to automate networks. Issues with traditional methods to classify network traffic and allocate resources can be solved by this SDN solution. Network data gathered by the SDN controller will allow data analytics methods to analyze and apply machine learning models to customize the network management. This paper has focused on analyzing network data and implement a network traffic classification solution using machine learning and integrate the model in software-defined networking platform

    NetO-App: A Network Orchestration Application for Centralized Network Management in Small Business Networks

    Full text link
    Software-defined networking (SDN) is reshaping the networking paradigm. Previous research shows that SDN has advantages over traditional networks because it separates the control and data plane, leading to greater flexibility through network automation and programmability. Small business networks require flexibility, like service provider networks, to scale, deploy, and self-heal network infrastructure that comprises of cloud operating systems, virtual machines, containers, vendor networking equipment, and virtual network functions (VNFs); however, as SDN evolves in industry, there has been limited research to develop an SDN architecture to fulfill the requirements of small business networks. This research proposes a network architecture that can abstract, orchestrate, and scale configurations based on small business network requirements. Our results show that the proposed architecture provides enhanced network management and operations when combined with the network orchestration application (NetO-App) developed in this research. The NetO-App orchestrates network policies, automates configuration changes, and manages internal and external communication between the campus networking infrastructure.Comment: 12 pages, 4 figures, To appear in the Proceedings of the 4th International Conference on Networks & Communications, 28-29 July 2018, Sydney, Australi

    Enabling Communication Technologies for Automated Unmanned Vehicles in Industry 4.0

    Full text link
    Within the context of Industry 4.0, mobile robot systems such as automated guided vehicles (AGVs) and unmanned aerial vehicles (UAVs) are one of the major areas challenging current communication and localization technologies. Due to stringent requirements on latency and reliability, several of the existing solutions are not capable of meeting the performance required by industrial automation applications. Additionally, the disparity in types and applications of unmanned vehicle (UV) calls for more flexible communication technologies in order to address their specific requirements. In this paper, we propose several use cases for UVs within the context of Industry 4.0 and consider their respective requirements. We also identify wireless technologies that support the deployment of UVs as envisioned in Industry 4.0 scenarios.Comment: 7 pages, 1 figure, 1 tabl

    Special Session on Industry 4.0

    Get PDF
    No abstract available
    • …
    corecore