5,450 research outputs found

    Soft Handoff and Uplink Capacity in a Two-Tier CDMA System

    Full text link
    This paper examines the effect of soft handoff on the uplink user capacity of a CDMA system consisting of a single macrocell in which a single hotspot microcell is embedded. The users of these two base stations operate over the same frequency band. In the soft handoff scenario studied here, both macrocell and microcell base stations serve each system user and the two received copies of a desired user's signal are summed using maximal ratio combining. Exact and approximate analytical methods are developed to compute uplink user capacity. Simulation results demonstrate a 20% increase in user capacity compared to hard handoff. In addition, simple, approximate methods are presented for estimating soft handoff capacity and are shown to be quite accurate.Comment: To appear in IEEE Transactions on Wireless Communication

    An adaptive multipath protocol for efficient IP handoff in mobile wireless networks

    Get PDF
    Achieving IP handoff with a short latency and minimal packet loss is essential for mobile devices that roam across IP subnets. Many existing solutions require changes to be made to the network or transport layer, and they tend to suffer from long handoff latency in either soft or hard handoff scenario, or both; and some are difficult to deploy in practice. We propose a new protocol, called the adaptive multipath protocol, to achieve efficient IP handoff. Based on link-layer signal strength measurements, two different schemes are used to handle soft and hard handoff respectively. Seamless IP handoff is achieved by using multiple transport layer connections on top of persistent link-layer connectivity during soft handoff. To achieve low handoff latency during hard handoff, a set of distributed sessions repositories (SRs), which are independent of the end hosts, are employed. Simulation results clearly support our claims. In particular, the latency for hard handoff is found to be as low as 50% of that of Fast handoff. © 2006 IEEE.published_or_final_versio

    Complete Interference Mitigation Through Receiver-Caching in Wyner's Networks

    Full text link
    We present upper and lower bounds on the per-user multiplexing gain (MG) of Wyner's circular soft-handoff model and Wyner's circular full model with cognitive transmitters and receivers with cache memories. The bounds are tight for cache memories with prelog μ≥2/3D\mu\geq 2/3D in the soft-handoff model and for μ≥D\mu \geq D in the full model, where DD denotes the number of possibly demanded files. In these cases the per-user MG of the two models is 1+μ/D1+\mu/D, the same as for non-interfering point-to-point links with caches at the receivers. Large receiver cache-memories thus allow to completely mitigate interference in these networks.Comment: Submitted to ITW 2016 in Cambridg

    Handover aspects for a Low Earth Orbit (LEO) CDMA Land Mobile Satellite (LMS) system

    Get PDF
    This paper addresses the problem of handoff in a land mobile satellite (LMS) system between adjacent satellites in a low earth orbit (LEO) constellation. In particular, emphasis is placed on the application of soft handoff in a direct sequence code division multiple access (DS-CDMA) LMS system. Soft handoff is explained in terms of terrestrial macroscopic diversity, in which signals transmitted via several independent fading paths are combined to enhance the link quality. This concept is then reconsidered in the context of a LEO LMS system. A two-state Markov channel model is used to simulate the effects of shadowing on the communications path from the mobile to each satellite during handoff. The results of the channel simulation form a platform for discussion regarding soft handoff, highlighting the potential merits of the scheme when applied in a LEO LMS environment

    Effect of Soft and Softer Handoffs on CDMA System Capacity

    No full text
    Abstract? The effect of soft and softer handoffs on code-division multiple-access (CDMA) system capacity is evaluated for unsectorized and sectorized hexagonal cells according to an average bit energy-to-interference power spectral density, which corresponds to a bit-error rate (BER) of 10-3. The effect of imperfect sectorization on sectorization efficiency is also considered. On the reverse link, there is no capacity loss as no extra channels are needed to perform soft handoff, while the macrodiversity provided by soft handoff can improve the reverse-link quality and extend the cell coverage. On the forward link, when soft handoff is employed in unsectorized cells, the capacity loss due to two traffic channels assigned to a user in the handoff zone is 0.2% or 1.1% for a voice activity factor of 3/8 or 1/2, respectively. As the forward-link capacity is higher than that of the reverse link, this small capacity loss does not affect the system capacity. For sectorized cells having three sectors per cell, there are overlapping coverage areas between sectors, where mobiles in these areas are subjected to an increase in cochannel iterference. For an overlapping angle of 5°, the sectorization efficiency is 0.96 and 0.7 for the reverse-link and forward-link systems, respectively. When soft and softer handoffs are employed, the forward-link sectorization efficiency is improved to 0.97. We find the application of soft and softer handoff improves not only the forward-link capacity, but also the signal-to-interference ratio (SIR) for mobiles near the cell and sector boundaries. Index Terms?CDMA, macrodiversity, sectorization efficiency, soft handoff, softer handoff

    HANDOVER MANAGEABILITY AND PERFORMANCE MODELING IN MOBILE COMMUNICATION NETWORKS

    Get PDF
    In cellular Networks, a mobile station (MS’s) move from one cell region to another on seamless Communicationscheduling.. Handoff or Handover is an essential issue for the seamless communication. Several approaches havebeen proposed for handoff performance analysis in mobile communication systems. In Code-Division Multiple-Access (CDMA) systems with soft handoff, mobile stations (MS’s) within a soft-handoff region (SR) use multipleradio channels and receive their signals from multiple base stations (BS’s) simultaneously. Consequently, SR’sshould be investigated for handoff analysis in CDMA systems. In this paper, a model for soft handoff in CDMAnetworks is developed by initiating an overlap region between adjacent cells facilitating the derivation of handoffmanageability performance model. We employed an empirical modelling approach to support our analyticalfindings, measure and investigated the performance characteristics of typical communication network over a specificperiod from March to June, 2013 in an established cellular communication network operator in Nigeria. Theobserved data parameters were used as model predictors during the simulation phase. Simulation results revealedthat increased system capacity degrades the performance of the network due to congestion, dropping and callblocking, which the system is most likely to experience, but the rate of those factors could be minimized by properlyconsidering the handoff probabilities level. Comparing our results, we determined the effective and efficientperformance model and recommend it to network operators for an enhanced Quality of Service (QoS), which willpotentially improve the cost-value ratio for mobile users and thus confirmed that Soft Handoff (SH) performancemodel should be carefully implemented to minimize cellular communication system defects.Keywords: CDMA, QoS, optimization, Handoff Manageability, Congestion, Call Blocking and Call Dropping,

    A Comparative study on Handoff Algorithms for GSM and CDMA Cellular Networks

    Get PDF
    The GSM, CDMA cellular systems are most trendy 2G and 3G digital cellular telecommunications systems, which is widely used throughout the world. These systems have many advantages such as high security, higher quality of call transmission over the long distances, low transmitted power, and enhanced capacity with more efficient utilization of the frequency spectrum. With these advantages these cellular systems have attracted more subscribers with more attention in the field of mobile communications. One of the most attractive features of cellular system is handoff which is a continuation of an active call when the mobile is moving from one cell to another without disconnecting the call. Usually, continuous service is achieved by efficiently designed handoff algorithms. So, efficient handoff algorithms are necessary for enhancing the capacity and QoS of cellular system. In this paper, the handoff analysis for GSM, CDMA cellular networks are done under various propagation models. Various handoff algorithms of GSM are described and also a novel received signal strength (RSS) based GSM handoff algorithm with adaptive hysteresis is analyzed. CDMA Soft handoff algorithm is analyzed and effective soft handoff parameters are estimated for better performance. The Comparison of handoff algorithms is studied based on results

    Pengaruh Soft Handoff Terhadap Peningkatan Kapasitas Jaringan UMTS

    Get PDF
    Universal Mobile Telecommunication System (UMTS) adalah produk dari teknologi selular generasi ketiga yang berasal dari evolusi GSM dengan menggunakan air interace Wideband Code Division Multiple Access (WCDMA). Standarisasi UMTS mengikuti European Telecommunication Standard Institution (ETSI) pada 2 Mbps dan 2 GHz dengan alokasi spektrum 230 MHz, dengan frekuensi downlink 1885-2025 Mhz dan 2110-2200 Mhz untuk uplink. Dalam system ini handoff merupakan bagian mendasar yang mendukung mobilitas user. Handoff bertujuan untuk menyediakan layanan mobile secara kontinyu kepada user yang bergerak hingga melampaui jangkauan suatu sel. Secara umum terdapat tiga jenis handoff yang dapat diterapkan dalam jaringan UMTS yaitu hard handoff, soft handoff dan softer handoff. Penelitian ini bertujuan untuk mengetahui pengaruh soft handoff pada peningkatan jaringan UMTS. Analisisnya meliputi probabilitas blocking dan probabilitas dropcall karena handoff failure. Setiap analisis untuk soft handoff dibandingkan dengan hard handoff untuk mengetahui peningkatan yang terjadi. Dalam perhitungan digunakan software Matlab7 untuk membantu proses analisis. Saat menerapkan soft handoff peningkatan kapasitas sebesar 9,77%, level penerimaan daya minimum 6,78% lebih kecil dan dropcall probability menurun sebesar - 98% dibanding dengan saat hard handoff. Dengan demikian soft handoff dapat memberikan pengaruh yang lebih baik untuk performa jaringan UMTS. Kata Kunci— Soft handoff, hard handoff, kapasitas, bloking call, dan dropcal

    Network planning aspects of DS-CDMA with particular emphasis on soft handoff

    Get PDF
    • …
    corecore