4,190 research outputs found

    Design, fabrication and control of soft robots

    Get PDF
    Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.National Science Foundation (U.S.) (Grant IIS-1226883

    Towards an ontology for soft robots: What is soft?

    Get PDF
    The advent of soft robotics represents a profound change in the forms robots will take in the future. However, this revolutionary change has already yielded such a diverse collection of robots that attempts at defining this group do not reflect many existing ‘soft’ robots. This paper aims to address this issue by scrutinising a number of descriptions of soft robots arising from a literature review with the intention of determining a coherent meaning for soft. We also present a classification of existing soft robots to initiate the development of a soft robotic ontology. Finally, discrepancies in prescribed ranges of Young’s modulus, a frequently used criterion for the selection of soft materials, are explained and discussed. A detailed visual comparison of these ranges and supporting data is also presented

    Design, Modeling, and Control Strategies for Soft Robots

    Get PDF

    Biomimetic Skin

    Get PDF

    Special Session on Industry 4.0

    Get PDF
    No abstract available
    • …
    corecore