5,305 research outputs found
Studying Social Networks at Scale: Macroscopic Anatomy of the Twitter Social Graph
Twitter is one of the largest social networks using exclusively directed
links among accounts. This makes the Twitter social graph much closer to the
social graph supporting real life communications than, for instance, Facebook.
Therefore, understanding the structure of the Twitter social graph is
interesting not only for computer scientists, but also for researchers in other
fields, such as sociologists. However, little is known about how the
information propagation in Twitter is constrained by its inner structure. In
this paper, we present an in-depth study of the macroscopic structure of the
Twitter social graph unveiling the highways on which tweets propagate, the
specific user activity associated with each component of this macroscopic
structure, and the evolution of this macroscopic structure with time for the
past 6 years. For this study, we crawled Twitter to retrieve all accounts and
all social relationships (follow links) among accounts; the crawl completed in
July 2012 with 505 million accounts interconnected by 23 billion links. Then,
we present a methodology to unveil the macroscopic structure of the Twitter
social graph. This macroscopic structure consists of 8 components defined by
their connectivity characteristics. Each component group users with a specific
usage of Twitter. For instance, we identified components gathering together
spammers, or celebrities. Finally, we present a method to approximate the
macroscopic structure of the Twitter social graph in the past, validate this
method using old datasets, and discuss the evolution of the macroscopic
structure of the Twitter social graph during the past 6 years.Comment: ACM Sigmetrics 2014 (2014
Botnet Detection using Social Graph Analysis
Signature-based botnet detection methods identify botnets by recognizing
Command and Control (C\&C) traffic and can be ineffective for botnets that use
new and sophisticate mechanisms for such communications. To address these
limitations, we propose a novel botnet detection method that analyzes the
social relationships among nodes. The method consists of two stages: (i)
anomaly detection in an "interaction" graph among nodes using large deviations
results on the degree distribution, and (ii) community detection in a social
"correlation" graph whose edges connect nodes with highly correlated
communications. The latter stage uses a refined modularity measure and
formulates the problem as a non-convex optimization problem for which
appropriate relaxation strategies are developed. We apply our method to
real-world botnet traffic and compare its performance with other community
detection methods. The results show that our approach works effectively and the
refined modularity measure improves the detection accuracy.Comment: 7 pages. Allerton Conferenc
An Automated Social Graph De-anonymization Technique
We present a generic and automated approach to re-identifying nodes in
anonymized social networks which enables novel anonymization techniques to be
quickly evaluated. It uses machine learning (decision forests) to matching
pairs of nodes in disparate anonymized sub-graphs. The technique uncovers
artefacts and invariants of any black-box anonymization scheme from a small set
of examples. Despite a high degree of automation, classification succeeds with
significant true positive rates even when small false positive rates are
sought. Our evaluation uses publicly available real world datasets to study the
performance of our approach against real-world anonymization strategies, namely
the schemes used to protect datasets of The Data for Development (D4D)
Challenge. We show that the technique is effective even when only small numbers
of samples are used for training. Further, since it detects weaknesses in the
black-box anonymization scheme it can re-identify nodes in one social network
when trained on another.Comment: 12 page
Towards Psychometrics-based Friend Recommendations in Social Networking Services
Two of the defining elements of Social Networking Services are the social
profile, containing information about the user, and the social graph,
containing information about the connections between users. Social Networking
Services are used to connect to known people as well as to discover new
contacts. Current friend recommendation mechanisms typically utilize the social
graph. In this paper, we argue that psychometrics, the field of measuring
personality traits, can help make meaningful friend recommendations based on an
extended social profile containing collected smartphone sensor data. This will
support the development of highly distributed Social Networking Services
without central knowledge of the social graph.Comment: Accepted for publication at the 2017 International Conference on AI &
Mobile Services (IEEE AIMS
Preserving Link Privacy in Social Network Based Systems
A growing body of research leverages social network based trust relationships
to improve the functionality of the system. However, these systems expose
users' trust relationships, which is considered sensitive information in
today's society, to an adversary.
In this work, we make the following contributions. First, we propose an
algorithm that perturbs the structure of a social graph in order to provide
link privacy, at the cost of slight reduction in the utility of the social
graph. Second we define general metrics for characterizing the utility and
privacy of perturbed graphs. Third, we evaluate the utility and privacy of our
proposed algorithm using real world social graphs. Finally, we demonstrate the
applicability of our perturbation algorithm on a broad range of secure systems,
including Sybil defenses and secure routing.Comment: 16 pages, 15 figure
Gaming on and off the social graph: the social structure of Facebook games
Games built on Online Social Networks (OSNs) have become a phenomenon since 3rd party developer tools were released by OSNs such as Facebook. However, apart from their explosive popularity, little is known about the nature of the social networks that are built during play. In this paper, we present the findings of a network analysis study carried out on two Facebook applications, in comparison with a similar but stand-alone game. We found that games built both on and off a social graph exhibit similar social properties. Specifically, the distribution of player-to-player interactions decays as a power law with a similar exponent for the majority of players. For games built on the social network platform however, we find that the networks are characterised by a sharp cut-off, compared with the classically scale-free nature of the social network for the game not built on an existing social graph
GraphSE: An Encrypted Graph Database for Privacy-Preserving Social Search
In this paper, we propose GraphSE, an encrypted graph database for online
social network services to address massive data breaches. GraphSE preserves
the functionality of social search, a key enabler for quality social network
services, where social search queries are conducted on a large-scale social
graph and meanwhile perform set and computational operations on user-generated
contents. To enable efficient privacy-preserving social search, GraphSE
provides an encrypted structural data model to facilitate parallel and
encrypted graph data access. It is also designed to decompose complex social
search queries into atomic operations and realise them via interchangeable
protocols in a fast and scalable manner. We build GraphSE with various
queries supported in the Facebook graph search engine and implement a
full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that
GraphSE is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE: An
Encrypted Graph Database for Privacy-Preserving Social Search". It includes
the security proof of the proposed scheme. If you want to cite our work,
please cite the conference version of i
- âŠ