
Boston University
OpenBU http://open.bu.edu
BU Open Access Articles BU Open Access Articles

2014-10

Botnet detection using social graph
analysis

This work was made openly accessible by BU Faculty. Please share how this access benefits you.
Your story matters.

Version
Citation (published version): Jing Wang, Ioannis Ch Paschalidis. 2014. "Botnet detection using

social graph analysis." 52nd Annual Allerton Conference on
Communication, Control, and Computing,

https://hdl.handle.net/2144/18015
Boston University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Boston University Institutional Repository (OpenBU)

https://core.ac.uk/display/142070168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bu.edu/disc/share-your-open-access-story/

Botnet Detection using Social Graph Analysis∗

Jing Wang† and Ioannis Ch. Paschalidis‡

Abstract— Signature-based botnet detection methods identify
botnets by recognizing Command and Control (C&C) traffic
and can be ineffective for botnets that use new and sophisti-
cate mechanisms for such communications. To address these
limitations, we propose a novel botnet detection method that
analyzes the social relationships among nodes. The method
consists of two stages: (i) anomaly detection in an “interaction”
graph among nodes using large deviations results on the
degree distribution, and (ii) community detection in a social
“correlation” graph whose edges connect nodes with highly
correlated communications. The latter stage uses a refined
modularity measure and formulates the problem as a non-
convex optimization problem for which appropriate relaxation
strategies are developed. We apply our method to real-world
botnet traffic and compare its performance with other com-
munity detection methods. The results show that our approach
works effectively and the refined modularity measure improves
the detection accuracy.

Index Terms— Network anomaly detection, cyber-security,
social networks, random graphs, optimization.

I. INTRODUCTION

A botnet is a network of compromised nodes (bots)
controlled by a “botmaster.” The most common type is a
botnet of network computers, which is usually used for
Distributed Denial-of-Service (DDoS) attacks, click fraud
and spamming, etc. DDoS attacks comprise packet streams
from disparate bots, aiming to consume some critical re-
source at the target and to deny the service of the target
to legitimate clients. In a recent survey, 300 out of 1000
surveyed businesses have suffered from DDoS attacks and
65% of the attacks cause up to $10,000 loss per hour [1].
Both click fraud and spamming are harmful to web economy.
Click fraud exhausts the advertisement budgets of businesses
in pay-per-click services [2], and spamming is popular for
malicious advertisements as well as manipulation of search
results [3].

Because of the huge loss caused by botnets, detecting
them in time is very important. Most of the existing bot-
net detection approaches focus on Command and Control
(C&C) channels required by botmasters to command their
bots [4], [5]. One mechanism is to filter specific types of
C&C traffic (e.g., IRC traffic) [6], [7], [8]. Recently, botnets
have evolved to bypass these detection methods by using
more sophisticated C&C channels, such as HTTP and P2P

protocols [9], [2]. P2P botnets like Nugache [10] and Storm

Research partially supported by the NSF under grants CNS-1239021 and
IIS-1237022, by the ARO under grants W911NF-11-1-0227 and W911NF-
12-1-0390, and by the ONR under grant N00014-10-1-0952.
† Division of Systems Engineering, Boston University, 8 St. Mary’s St.,

Boston, MA 02215, wangjing@bu.edu.
‡ Dept. of Electrical & Computer Eng., Boston University, 8 Mary’s St.,

Boston, MA 02215, yannisp@bu.edu.

worm [9] are much harder to detect and mitigate because
they are decentralized. In addition, more types of C&C
channels are emerging; recent research shows that botnets
start to use Twitter as the C&C channel [11]. It is very
challenging to identify and monitor these sophisticated C&C
channels. Furthermore, the switching cost of C&C channels
is much lower than the monitoring cost, thus botnet can
bypass detection by changing C&C channels frequently.

In addition to C&C channels, botnets have some behav-
ioral characteristics. First, bots activities are more correlated
with each other than normal nodes [12], [8]. Second, bots
have more interactions with a set of pivotal nodes, including
targets and botmasters. Compared with C&C traffic, these
behavioral characteristics are harder to hide.

In this paper, we propose a novel botnet detection frame-
work based on these behavioral characteristics. Instead of
focusing on C&C channels, we detect botnets by analyzing
the social relationships, modeled as graphs of nodes. Two
types of social graphs are considered: (i) Social Interaction
Graphs (SIGs) in which two nodes are connected if there
is interaction between them, and (ii) Social Correlation
Graphs (SCGs) in which two nodes are connected if their
behaviors are correlated. We apply our method to real-world
botnet traffic, and the results show that it has high detection
accuracy.

II. METHOD OVERVIEW

We assume the data to be a sequence of interaction
records; each record r = (timestamp, id1, id2) contains a
timestamp and the IDs of the two participants. For botnets
of network computers, a interaction record corresponds to a
network packet.

We group interaction records into windows based on their
timestamps. For all k’s, we denote by Wk the collection of
interaction records in window k and present the definition of
the Social Interaction Graph (SIG) for window k as follows.

Definition 1
(Social Interaction Graph). Let Ek be an edge set such that
(i, j) ∈ Ek if there exists at least one interaction record
r ∈ Wk whose participant IDs are i and j. Then, the SIG
Gk = (V, Ek) corresponding to Wk is an undirected graph
whose vertex set V is the set of all nodes in the network and
whose edge set is Ek.

On a notational remark, throughout the paper we will use
n to denote the number of nodes in the network (cardinality
of V).

Our method consists of a network anomaly detection
stage and a botnet discovery stage (see Fig. 1). In the

ar
X

iv
:1

50
3.

02
33

7v
1

 [
cs

.S
I]

 8
 M

ar
 2

01
5

network anomaly detection stage, each SIG is evaluated with
a reference model and abnormal SIGs are stored into a pool
A. The botnet discovery stage is triggered whenever the
size of the pool A is greater than a threshold p. A set
of highly interactive nodes, referred to as pivotal nodes,
are identified. Both botmaster and targets are very likely
to be pivotal nodes because they need to interact with bots
frequently. These interactions correspond to C&C traffic for
botmasters and to attacking traffic for targets. In either case,
the interactions between each bot and pivotal nodes should
be correlated. To characterize this correlation, we construct
a Social Correlation Graph (SCG), whose formal definition
is in Section IV-B.1. We can detect bots by detecting the
community that has high interaction with pivotal nodes in
the SCG. We propose a novel community detection method
based on a refined modularity measure. This modularity
measure uses information in SIGs, i.e., pivotal interaction
measure (see Section IV-B.3), to improve detection accuracy.

Put it into

Abnormal?

Monitoring
Degree Distribution

Construct SIG

Construct
SCG

 Community
Detection

Estimate Pivotal
Interaction Measure

No
Report the Botnet

Stage 1: Network Anomaly Detection Stage 2: Botnet Discovery

Yes

Yes

 Identify Pivotal Nodes

No

Fig. 1. Overview of Our Method.

III. NETWORK ANOMALY DETECTION

As noted above, the goal of the network anomaly detection
stage is to identify abnormal SIGs given some knowledge
of what constitutes “normal” interactions between nodes.
A natural way is to monitor the degree distributions of
graphs and to compare them with appropriate reference
graph models. This paper focuses on the Erdös-Rényi (ER)
model, the most common type of random graph models.
Our approach, however, can be generalized to more types
of models. We apply composite hypothesis testing to detect
abnormal graphs.

A. Large Deviation Principle for ER Random Graphs

First, we present a Large Deviation Principle (LDP) for
undirected random graphs. Let Gn denote the space of all
simple labeled undirected graphs of n vertices. For any graph
G ∈ Gn, let d = (d1, . . . , dn) denote the labeled degree
sequence of G. Also let m = 1

2

∑n
j=1 dj denote the number

of edges in G. We assume that any two nodes are connected
by at most one edge, which means that the node degree in G
is less than n. For 0 ≤ i ≤ n− 1, let hi =

∑n
j=1 1 (dj = i)

be the number of vertices in G of degree i, where 1(·) is
the indicator function. Henceforth, h = (h0, . . . , hn−1), a
quantify irrelevant to the ordering of vertices, will be referred
to as the degree frequency vector of a graph G. The empirical
distribution of the degree sequence d, defined by µ(n), is a
probability measure on N0 = N ∪ {0} that puts mass hi/n
at i, for 0 ≤ i ≤ n− 1.

In the Erdös-Rényi model, G(n, p), the distribution of
the degree of any particular vertex v is binomial. Namely,
P (dv = k) =

(
n−1
k

)
pk (1− p)n−1−k , where n is the

total number of vertices in the graph. It it well known that
when n → ∞ and np is constant, the binomial distribution
converges to a Poisson distribution. Let β = np denote
the constant. Then in the limiting case, the probability that
the degree of a node equals k is pβ,k = βke−β

k! , which is
independent of the node label. Let pβ = (pβ,0, . . . , pβ,∞) be
the Poisson distribution viewed as a vector whose parameter
is β.

Let P(N0) be the space of all probability measures
defined on N0. We view any probability measure µ ∈
P(N0) as an infinite vector µ = (µ0, . . . , µ∞). Let S =
{µ ∈ P (N0) : µ̄ :=

∑∞
i=0 iµi <∞} be the set of all proba-

bility measures on N0 with finite mean. It is easy to verify
that pβ ∈ S. Let Pn denote the Erdös-Rényi distribution on
the space Gn with parameter β/n.

The so-called rate function I : S → [−∞,∞] can be used
to quantify the deviations of µ(n) with respect to a random
graph model ([13], [14]). For the ER model, [13] proposes
the following rate function.

Definition 2
For the ER model with parameter β for its degree distribu-
tion, we could define the rate function IER : S → [−∞,∞]
as

IER (µ;β) = D (µ ‖ pβ) +
1

2
(µ̄− β) +

µ̄

2
log β − µ̄

2
log µ̄,

where D (µ ‖ pβ) =
∑
i µi log

(
µi
pβ,i

)
is the Kull-

back–Leibler (KL) divergence of µ with respect to pβ .

[13] further establishes an LDP for µ(n) with this rate
function. In the interest of space, we will not provide a formal
statement of the LDP. Intuitively, when n is large enough, the
empirical degree distribution behaves as Pn

(
µ(n) ≈ µ

)
�

e−nIER(µ;β).

B. A Formal Anomaly Detection Test

In this section, we consider the problem of evaluating
whether a graph G is normal, i.e., comes from the ER model
with a certain set of parameters (H0). Let µG be the empir-
ical degree distribution of the graph G and let IER

(
µG ;β

)
(cf. Def. 2) be the corresponding rate function. We present
the following statement of the generalized Hoeffding test for
this anomaly detection problem.

Definition 3
The Hoeffding test [15] is to reject H0 when G is in the set:

S∗F =
{
G | IER

(
µG ;β

)
≥ λ

}
, (1)

where λ is a detection threshold.
It can be shown that the Hoeffding test (1) satisfies the

Generalized Neyman-Pearson (GNP) criterion [14].

IV. BOTNET DISCOVERY

The network anomaly detection technique in the previous
section can only report an alarm when a botnet exists.
In order to learn more about the botnet, we develop the
botnet discovery technique described in this section. The first
challenge for botnet discovery is that a single abnormal SIG
is usually insufficient to infer complete information about a
botnet, including the botmasters and the bots in the botnet.
As a result, we monitor windows continuously and store all
abnormal SIGs in a pool A. The botnet discovery stage is
triggered only when |A| > p.

A. Identification of Pivotal Nodes

We assume a sequence of abnormal SIGs A ={
G1, . . . ,G|A|

}
. Detecting bots directly is non-trivial. In-

stead, detecting the leaders (botmasters) or targets is much
simpler because they are more interactive than normal nodes.
Botmasters need to “command and control” their bots in
order to maintain the botnet, and bots actively interact with
victims in typical DDoS attacks. Both leaders and targets,
henceforth referred to as pivotal nodes, are highly interactive.
Let Gijk be an indicator of edge existence between node i and
j in Gk. Then, for i = 1, . . . , n,

ei =
1

|A|

|A|∑
k=1

n∑
j=1

Gijk (2)

represents the amount of interaction of node i with all
other nodes in A. Henceforth, ei is referred to as the total
interaction measure of node i. We present the following
definition of pivotal nodes.

Definition 4
(Pivotal nodes). We define the set of pivotal nodes N =
{i : ei > τ}, where τ is a threshold.

After identifying pivotal nodes, the problem is equivalent to
detecting the community associated with pivotal nodes.

B. Botnet Discovery

1) Construction of the Social Correlation Graph: Com-
pared to similar approaches in community detection, e.g., the
leader-follower algorithm [16], our method takes advantage
of not only temporal features (SIG) but also correlation
relationships. These relationships are characterized using a
graph, whose definition is presented next.

For i = 1, . . . , n, let variable Xi represent the number
of pivotal nodes in N that node i has interacted with.
Let ρ(Xi, Xj) be the sample Pearson correlation coefficient
between two random variables Xi and Xj . In addition, if the
sample standard deviation of either Xi or Xj equals zero,
we let ρ (Xi, Xj) = 0 to avoid division by zero.

Definition 5
(Social Correlation Graph). The Social Correlation Graph
(SCG) C = (V, Ec) is an undirected graph with vertex set V
and edge set Ec = {(i, j) : |ρ (Xi, Xj)| > τρ}, where τρ is
a threshold.

Because the behaviors of the bots are correlated, they are
more likely to be connected to each other in the SCG. Our
problem is to find an appropriate division of the SCG to
separate bots and normal nodes. Our criterion for “appropri-
ate” is related to the well-known concept of modularity in
community detection [17], [18], [19].

2) Modularity-based Community Detection: The problem
of community detection in a graph amounts to dividing the
vertices of a given graph into non-overlapping groups such
that connections within groups are relatively dense while
those between groups are sparse [18].

The modularity for a given subgraph is defined to be the
fraction of edges within the subgraph minus the expected
fraction of such edges in a randomized null model. Although
it was proposed as the stopping criterion of a method, this
measure later inspired a broad range of community detection
methods named modularity-maximization methods.

We consider the simple case when there is only one botnet
in the network. As a result, we want to divide the nodes
into two groups, one for bots and one for normal nodes.
Suppose that si is variable such that si = 1 if node i is a
bot and si = −1 otherwise. Let dci be the degree of node i
in SCG C = (V, Ec) for i = 1, . . . , n and let mc = 1

2

∑
i d
c
i

be the edge number of C. For a partition specified by s =
(s1, . . . , sn), its modularity is defined as in [18]

Q (s) =
1

2mc

n∑
i,j=1

(Aij −Nij) δ (si, sj) , (3)

where δ (si, sj) = 1
2 (sisj + 1) is an indicator of whether

node i and node j are of the same type. Aij =
1 (|ρ (Xi, Xj)| > τρ) is an indicator of the adjacency of node
i with node j. Nij is the expected number of edges between
node i and node j in a null model. The selection of the null
model is empirical, but the most common choice by far is the
configuration model [20] in which Nij =

dcid
c
j

2mc . The optimal
division of vertices should maximize the modularity measure
(3).

3) Refined Modularity: We introduce two refinements
to the modularity measure to make it suitable for botnet
detection. First, intuitively, bots should have strong inter-
actions with pivotal nodes and normal nodes should have
weak interactions. We want to maximize the difference. As
a result, our objective considers nodes’ interaction to the
pivotal nodes. Let

ri =
1

|A|

|A|∑
k=1

∑
j∈N

eiG
ij
k (4)

denote the amount of interaction between node i and pivotal
nodes. We refer to ri as pivotal interaction measure of node
i. Then,

∑
i risi quantifies the difference between the pivotal

interaction measure of bots and that of normal nodes. A
natural extension for the modularity measure is to include
an additional term to maximize

∑
i risi.

Second, the modularity measure is criticized to suffer
from low resolution, namely it favors large communities and
ignores small ones [21], [22]. The botnet, however, could
possibly be small. To address this issue, we introduce a
regularization term for the size of botnets. It is easy to obtain
that

∑
i 1 (si = 1) =

∑
i
si+1
2 is the number of detected

bots. Thus, our refined modularity measure is

Qd (s) =
1

2mc

∑
i,j∈V

(
Aij −

dcid
c
j

2mc

)
sisj

+w1

∑
i

risi − w2

∑
i

si + 1

2
(5)

where w1 and w2 are appropriate weights.
The two modifications also influence the results of isolated

nodes with degree 0, which possibly exist in SCGs. By
Def. 5, a node is isolated if its sample deviation is zero
or its correlations with other nodes are small enough. The
placement of isolated nodes, however, does not influence the
traditional modularity measure, resulting in arbitrary commu-
nity detection results [18]. This limitation is addressed by the
two additional terms. If node i is isolated and ri = 0, then
si = −1 in the solution because of the regularization term
w2

∑
i
si+1
2 . On the contrary, if ri is large enough, si = 1

in the solution because of the term w1

∑
i risi.

C. Relaxation of the Optimization Problem

The modularity-maximization problem has been shown as
being NP-complete [23], [24]. The existing algorithms for
this problem can be broadly categorized into two types: (i)
heuristic methods that solve this problem directly [25], and
(ii) mathematical programming methods that relax it into an
easier problem first [23], [26]. We follow the second route
because it is more rigorous.

We define the modularity matrix M = {Mij}ni,j=1,

where Mij =
Aij
2mc −

dcid
c
j

(2mc)2
. Let s = (s1, . . . , sn) and

r = (r1, . . . , rn), then the modularity-maximization problem
becomes

max s
′
Ms +

(
w1r

′
− w2

2
1
′
)
s (6)

s.t. s2i = 1, ∀i.

To make the objective function concave, we introduce a
negative multiple of s

′
Is [26], leading to:

max s
′
(M− σI) s +

(
w1r

′
− w2

2
1
′
)
s (7)

s.t. s2i = 1, ∀i,

where σ is a positive scalar. Notice that the objective of (7) is
equivalent to that of (6) because s

′
Is = ns2i = n is ensured

by the constraint. We can choose σ large enough so that
M − σI is negative definite. This modification induces no
extra computational cost. Although the feasible domain of the
revised problem is still non-convex, the objective is concave

now. (7) is a typical non-convex Quadratically Constrained
Quadratic Programming (QCQP) [27]. Let S = ss

′
, P0 =

M−σI, and q0 = w1r− w2

2 1. We can relax problem (7) to

max Tr (SP0) + q
′

0s

s.t.

[
S s

s
′

1

]
� 0,

Sii = 1, ∀i.

(8)

The problem above is a Semidefinite Programming problem
(SDP) and produces an upper bound on the optimal value
of the original problem [27]. It is well known that SDP
is polynomially solvable and many solvers (CSDP [28],
SDPA [29]) are available.

1) Randomization: The SDP relaxation (8) provides an
optimal solution together with an upper bound on the optimal
value of problem (7). However, the solution of the SDP
relaxation (8) may not be feasible for the original problem
(7). To generate feasible solutions we use a randomization
technique.

If (S∗, s∗) is the optimal solution of the relaxed problem,
then S∗ − s∗s∗

′
can be interpreted as a covariance matrix.

If we pick x = (x1, . . . , xn) as a Gaussian random vector
with x ∼ N (s∗,S∗−s∗s∗

′
), then x “solves” the non-convex

QCQP in (7) “on average” over this distribution. As a result,
we can draw samples x from this normal distribution and
simply obtain feasible solutions by taking x̂ = sgn(x). We
sample 10,000 points and pick the point that maximizes
f(x) = x

′
(M− σI)x +

(
w1r− w2

2 1
)′
x.

V. EXPERIMENTAL RESULTS

In this section, we apply our network anomaly detection
approach to real-world traffic. Meanwhile, we also com-
pare the performance of our botnet discovery approach,
a modularity-based community detection technique, with
existing community detection techniques.

A. Description of Dataset

In this paper, we mix some real-world botnet traffic
with some real-world background traffic. For the real-world
botnet traffic, we use the “DDoS Attack 2007” dataset
by the Cooperative Association for Internet Data Analysis
(CAIDA) [30]. It includes traces from a Distributed Denial-
of-Service (DDoS) attack on August 4, 2007. The DDoS
attack attempts to block access to the targeted server by con-
suming computing resources on the server and by consuming
all of the bandwidth of the network connecting the server to
the Internet.

The total size of the dataset is 21 GB and the dataset
covers about one hour (20:50:08 UTC to 21:56:16 UTC).
These dataset only contains attacking traffic to the victim; all
other traffic, including the C&C traffic, has been removed by
the creator of the dataset. The dataset consists of two parts.
The first part is the traffic when the botnet initiates the attack
(between 20:50 UTC and 21:13 UTC). In the initiating stage,
the bots probe whether they can reach the victim in order
to determine the set of nodes that should participate in the
attack. The traffic of the botnet during this period is small,

thus, it is very challenging to detect it using only network
load. The second part is the attack traffic which starts around
21:13 UTC when the network load increases rapidly (within
a few minutes) from about 200 Kb/s to about 80 Mb/s. With
this significant change of transmission rate, it is trivial to
detect botnets when the attack starts (after 21:13 UTC). In
this paper, we select a 5-minutes segment from the first part,
i.e., during the time when the botnet initiates the attack. The
total number of bot IP addresses in the selected traffic is 136.

For the background traffic, we use trace 6 in the University
of Twente traffic traces data repository (simpleweb) [31].
This trace was measured in a 100 Mb/s Ethernet link
connecting an educational organization to the Internet. This
is a relatively small organization with around 35 employees
and a little over 100 students working and studying at this
site (the headquarters of this organization). There are 100
workstations at this location which all have 100 Mbit/s
LAN connection. The core network consists of a 1 Gbit/s
connection. The recordings took place between the external
optical fiber modem and the first firewall. The measured link
was only mildly loaded during this period. The background
traffic we choose lasts for 3, 600 seconds. The botnet traffic
is mixed with background traffic between 2, 000 and 2, 300
seconds.

B. Results of Network Anomaly Detection

We divide the mixed traffic into 10-second windows
and create a sequence of 360 SIGs. Fig. 2-A shows the
detection results. The blue “+” markers indicate the value of
IER(µi; β̂) for each window i, i = 1, . . . , 360, where µi is
the empirical degree distribution of SIG i and β̂ is estimated
from the SIGs created using only background traffic. The
red dash line shows the threshold λ = 0.18, which can be
set to constrain the false alarm rate below a desirable value.
According to rule (1), there are 36 abnormal SIGs, namely
|A| = 36. There are 30 SIGs that have botnet traffic and 29
SIGs are correctly identified. SIG no. 20 corresponding to the
time range [2000s, 2010s] is missed. Being the start of the
botnet traffic, this range has very low botnet activity, which
may explain the miss-detection. In addition, there are two
groups of false alarms—3 false alarms around 3,000s and
4 false alarms around 3,500s. Fig. 2-B shows the Receiver
Operating Characteristic (ROC) curve of the detection rule
(1).

C. Results of Botnet Discovery

The botnet discovery stage aims to identify bots based on
the information in A. The first step is to identify a set of
pivotal nodes. Recall that the total interaction measure ei
in (2) quantifies the amount of interaction in A of node
i with other nodes. The set of pivotal nodes is N =
{i : ei > τ}, where τ is a prescribed threshold. Let emax
be the maximum total interaction measure of all nodes and
SNorme = {ei/emax : i = 1, . . . , n} be the normalized set of
total interaction measures. Fig. 3 plots SNorme in descending
order and in log-scale for the y-axis. Each blue “+” marker
represents one node. The blue curve in Fig. 3, being quite

0 500 1000 1500 2000 2500 3000 3500

Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

D
iv

er
ge

nc
e

A

0.0 0.2 0.4 0.6 0.8 1.0

false positive rate.

0.0

0.2

0.4

0.6

0.8

1.0

tr
ue

po
si

tiv
e

ra
te

.

B

Fig. 2. Figure A shows the rate function value IER(µi; β̂) for each win-
dow i. The x-axis plots the starting time of each window. The background
traffic lasts for 3,600 seconds and the botnet traffic is added between 2,000
and 2,300 seconds. Figure B shows the ROC curve. The x-axis plots the
false alarm rate and the y-axis the true positive rate.

0 50 100 150 200

Sequence number

10−4

10−3

10−2

10−1

100

A
m

ou
nt

of
in

te
ra

ct
io

n
(n

or
m

al
iz

ed
).

Fig. 3. Sorted amount of interaction in A defined by (2). y-axis is in
log-scale.

steep, clearly indicates the existence of influential pivotal
nodes. The red dash line in Fig. 3 plots the selected threshold
τ , which results in 3 pivotal nodes. Only one pivotal node
belongs to the botnet. The other two pivotal nodes are
active normal nodes. These two falsely detected pivotal
nodes correspond to the two false-alarm groups described
in Section V-B.

Our dataset has 396 nodes, including 136 bots and 260
normal nodes. Among the 396 nodes, only 213 nodes have
positive sample standard deviations. Let Vp be the set of all
nodes with positive sample standard deviations, Fig. 4 plots
the correlation matrix of these nodes. We can easily observe
two groups from Fig. 4.

We calculate the SCG C using Def. 5 and threshold τρ =
0.3. In the SCG C, there are 191 isolated nodes with degree
zero. The subgraph formed by the remaining 205 nodes has
two connected components (Fig. 5-A). Fig. 5-A plots normal
nodes as blue circles and bots as red squares. Although
the bots and the normal nodes clearly belong to different
communities, the two communities are not separated in the
narrowest part of the graph. Instead, the separating line is

Fig. 5. Comparison of different community detection techniques on SCG. Fig. A shows the ground-truth communities of bots and normal nodes. Fig.
B is the result of our botnet discovery approach. Fig. C is the result of the vector programming method proposed by Agarwal et al. [23]. Fig. D is the
result of the walktrap method [32] with three communities. Fig. E is the result of Newman’s leading eigenvector method [19] with 3 communities. Fig. F
is the result of the leading eigenvector method with 5 communities. In figure A-C, red squares are bots and blue circles are normal nodes. In figure D-F,
red squares indicate the group with highest average pivotal interaction measure, while blue circles indicate the group with the lowest one.

Fig. 4. The correlation matrix [ρ (Xi, Xj)]i∈Vp,j∈Vp .

closer to the bots.
We apply our botnet discovery method to C. The result

(Fig. 5-B) is very close to the ground truth (Fig. 5-A).
As comparison, we also apply other community-detection
methods to the 205-node subgraph.

The first method is the vector programming method pro-
posed by Agarwal et al. [23], which is a special case of
our method in which w1 = 0 and w2 = 0. This approach,
however, misses a number of bots (5-C).

The second method is the walktrap method by Pascal
et al. [32], [33], which defines a distance measure for
vertices based on a random walk and applies hierarchical
clustering [34]. When the desirable number of communities,
a required parameter, equals to two, the method outputs the
two connected components, a reasonable yet useless result
for botnet discovery. To make the results more meaningful,
we use walktrap to find three communities and ignore
the smallest one that corresponds to the smaller connected
components (right triangles in Fig. 5-D). The community

with a higher mean of pivotal interaction measure is detected
as botnet, and the rest of the nodes are labeled as normal.
The walktrap method separates bots and normal nodes in
the narrowest part of the graph, a reasonable result from the
perspective of community detection (Fig. 5-D). However, a
comparison with the ground-truth reveals that a lot of normal
nodes are falsely reported as bots.

The third method is the Newman’s leading eigenvector
method [19], [33], a classical modularity-based community
detection method. This method calculates the eigenvector
corresponding to the second-largest eigenvalue of the mod-
ularity matrix M, namely the leading eigenvector, and lets
solution s be the sign of the leading eigenvector. The method
can be generalized for detecting multi-communities [19].
Similar to the walktrap method, the leading eigenvector
method reports two connected components as results when
the desirable community number is two. We also use this
method to find three communities and ignore the smallest
one. Again, the community with higher mean of pivotal
interaction measure is detected as the botnet.

Different from previous methods, the eigenvector method
makes completely wrong prediction of the botnet. The com-
munity whose majority are bots (blue circles in Fig. 5-E)
is wrongly detected as the normal part and the community
formed by the rest of the nodes is wrongly detected as the
botnet. Despite being part of the real botnet, the community
of blue circles in Fig. 5-E actually has lower mean of pivotal
interaction measure, i.e., less overall communication with
pivotal nodes.

After dividing the SCG C into five communities using the
leading eigenvector approach for multi-communities [19], we
observe that the botnet itself is heterogeneous and divided
into three groups. Both the group with the highest mean of
pivotal interaction measure (Group II in Fig. 5-F) and the
group with the lowest mean (Group I in Fig. 5-F) are part

of the botnet.
Because of the heterogeneity, some groups of the botnet

may be misclassified. On the one hand, the leading eigen-
vector method wrongly separates Group I from the rest as
a single community, and merges Group II & IV with the
normal part (Group III). Because Group I has the lowest
pivotal interaction measure, it is wrongly detected as normal,
causing Group II, III, IV to be detected as the botnet. On the
other hand, the vector programming method wrongly detects
a lot of nodes in Group II, which should be bots, as normal
nodes.

By taking the pivotal interaction measure into considera-
tion, the misclassification can be avoided. In our formulation
of refined modularity (5), the term w1

∑
i risi maximizes the

difference of the pivotal interaction measure of the botnet
and that of the normal part. Owing to this term, our method
makes little mistake for nodes in Group II since they have
high pivotal interaction measures.

VI. CONCLUSION

In this paper, we propose a novel method of botnet
detection that analyzes the social relationships, modeled
as Social Interaction Graphs (SIGs) and Social Correla-
tion Graphs (SCGs), of nodes in the network. Compared
to previous methods, our method has following novelties.
First, our method applies social network analysis to botnet
detection and can detect botnets with sophisticated C&C
channels. Second, our method can be generalized to more
types of networks, such as email networks and biological
networks [35], [36]. Third, we propose a refined modularity
measure that is suitable for botnet detection. The refined
modularity also addresses some limitations of modularity.

REFERENCES

[1] “DDoS Protection Whitepaper,” 2012, http://www.neustar.biz/
enterprise/resources/ddos-protection/ddos-attacks-survey-whitepaper#
.UtwNR7Uo70o.

[2] N. Daswani and M. Stoppelman, “The anatomy of Clickbot.A,” in
Proceedings of the first conference on First Workshop on Hot Topics
in Understanding Botnet, 2007.

[3] Z. Gyongyi and H. Garcia-Molina, “Web spam taxonomy,” in First
international workshop on adversarial information retrieval on the
web (AIRWeb 2005), 2005.

[4] W. T. Strayer, R. Walsh, C. Livadas, and D. Lapsley, “Detecting botnets
with tight command and control,” in Proceedings of 2006 31st IEEE
Conference on Local Computer Networks. IEEE, 2006, pp. 195–202.

[5] X. Su and D. Zhang, “Botnet detecting method based on clustering
flow attributes of command and control communication channel,”
Dianzi Yu Xinxi Xuebao(Journal of Electronics and Information Tech-
nology), vol. 34, no. 8, pp. 1993–1999, 2012.

[6] J. Binkley and S. Singh, “An algorithm for anomaly-based botnet
detection,” Proceedings of USENIX Steps to Reducing Unwanted
Traffic on the Internet Workshop (SRUTI), pp. 43–48, 2006.

[7] J. Goebel and T. Holz, “Rishi: Identify bot contaminated hosts by IRC
nickname evaluation,” in Proceedings of the first conference on First
Workshop on Hot Topics in Understanding Botnets. Cambridge, MA,
2007, p. 8.

[8] G. Gu, J. Zhang, and W. Lee, “BotSniffer: Detecting botnet command
and control channels in network traffic,” in Proceedings of 15th Annual
Network and Distributed System Security Symposium, 2008.

[9] Z. Bu, P. Bueno, R. Kashyap, and A. Wosotowsky, “The New Era
of Botnets,” White paper from McAfee, 2010, https://www.botnets.fr/
images/b/b5/Wp-new-era-of-botnets.pdf.

[10] R. Lemos, “Bot software looks to improve peer-age,” 2006, http://
www.securityfocus.com/news/11390.

[11] A. Singh, “Social Networking for Botnet Command and Control,”
Ph.D. dissertation, San Jose State University, 2012.

[12] Y. Al-Hammadi and A. Abdulla, “Behavioural Correlation for Mali-
cious Bot Detection,” Ph.D. dissertation, University of Nottingham,
2010.

[13] S. Mukherjee, “Large deviation for the empirical degree distribution
of an Erdos-Renyi graph,” arXiv preprint arXiv:1310.4160, pp. 1–23,
2013.

[14] A. Dembo and O. Zeitouni, Large Deviations Techniques and Appli-
cations, 2nd ed. Springer, 1998.

[15] W. Hoeffding, “Asymptotically optimal tests for multinomial distribu-
tions,” Annals of Mathematical Statistics, vol. 36, pp. 369–401, 1965.

[16] D. Shah and T. Zaman, “Community detection in networks: The
leader-follower algorithm,” arXiv preprint arXiv:1011.0774, pp. 1–13,
2010.

[17] M. Newman, “Fast algorithm for detecting community structure in
networks,” Physical Review E, vol. 69, no. 6, p. 066133, 2004.

[18] ——, “Detecting community structure in networks,” The European
Physical Journal B - Condensed Matter, vol. 38, no. 2, pp. 321–330,
2004.

[19] ——, “Finding community structure in networks using the eigenvec-
tors of matrices,” Physical Review E, vol. 74, no. 3, p. 036104, 2006.

[20] M. Molloy and B. Reed, “A critical point for random graphs with a
given degree sequence,” Random structures and algorithms, vol. 6, no.
2-3, pp. 161–180, 1995.

[21] S. Fortunato and M. Barthelemy, “Resolution limit in community
detection,” Proceedings of the National Academy of Sciences of the
United States of America, vol. 104, no. 1, pp. 36–41, 2007.

[22] A. Lancichinetti and S. Fortunato, “Limits of modularity maximization
in community detection,” Physical Review E, vol. 84, no. 6, p. 066122,
2011.

[23] G. Agarwal and D. Kempe, “Modularity-maximizing graph communi-
ties via mathematical programming,” The European Physical Journal
B, vol. 66, no. 3, pp. 409–418, Nov. 2008.

[24] U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer,
Z. Nikoloski, and D. Wagner, “On modularity clustering,” IEEE
Transactions on Knowledge and Data Engineering, vol. 20, no. 2,
pp. 172–188, 2008.

[25] J. Duch and A. Arenas, “Community detection in complex networks
using extremal optimization,” Physical Review E, vol. 72, no. 2, p.
027104, 2005.

[26] E. Y. K. Chan and D.-Y. Yeung, “A convex formulation of modularity
maximization for community detection,” Proceedings of the Twenty-
Second international joint conference on Artificial Intelligence, vol. 3,
pp. 2218–2225, 2011.

[27] A. D’Aspremont and S. Boyd, “Relaxations and randomized methods
for nonconvex QCQPs,” pp. 1–16, 2003, http://web.stanford.edu/class/
ee364b/lectures/OLDrelaxations.pdf.

[28] B. Borchers, “CSDP, A C library for semidefinite programming,”
Optimization Methods and Software, vol. 1, no. 1, pp. 1–10, 1999.

[29] K. Fujisawa, M. Kojima, K. Nakata, and M. Yamashita, “SDPA
SemiDefinite Programming Algorithm,” Department of Mathematical
and Computing Science, Tokyo Institute of Technology, Tech. Rep.
B-308, 1995, http://www.is.titech.ac.jp/∼kojima/articles/b-308.ps.Z.

[30] “The CAIDA UCSD ”DDoS Attack 2007” Dataset,” CAIDA, 2013,
http://www.caida.org/data/passive/ddos-20070804 dataset.xml.

[31] R. R. R. Barbosa, R. Sadre, A. Pras, and R. van de Meent,
“Simpleweb/university of twente traffic traces data repository,”
http://eprints.eemcs.utwente.nl/17829/, Technical Report TR-CTIT-10-
19, April 2010.

[32] P. Pons and M. Latapy, “Computing communities in large networks
using random walks,” Computer and Information Sciences-ISCIS 2005,
2005.

[33] G. Csardi and T. Nepusz, “The igraph software package for complex
network research,” InterJournal, Complex Systems, vol. 1695, no. 5,
2006.

[34] J. H. Ward Jr, “Hierarchical grouping to optimize an objective func-
tion,” Journal of the American Statistical Association, vol. 58, no. 301,
pp. 236–244, 1963.

[35] M. Newman, S. Forrest, and J. Balthrop, “Email networks and the
spread of computer viruses,” Physical Review E, vol. 66, no. 3, p.
35101, 2002.

[36] M. Newman, Networks: an introduction. Oxford University Press,
2009.

http://www.neustar.biz/enterprise/resources/ddos-protection/ddos-attacks-survey-whitepaper#.UtwNR7Uo70o
http://www.neustar.biz/enterprise/resources/ddos-protection/ddos-attacks-survey-whitepaper#.UtwNR7Uo70o
http://www.neustar.biz/enterprise/resources/ddos-protection/ddos-attacks-survey-whitepaper#.UtwNR7Uo70o
https://www.botnets.fr/images/b/b5/Wp-new-era-of-botnets.pdf
https://www.botnets.fr/images/b/b5/Wp-new-era-of-botnets.pdf
http://www.securityfocus.com/news/11390
http://www.securityfocus.com/news/11390
http:// web.stanford.edu/ class/ee364b/ lectures/ OLDrelaxations.pdf
http:// web.stanford.edu/ class/ee364b/ lectures/ OLDrelaxations.pdf
http://www.is.titech.ac.jp/~kojima/articles/b-308.ps.Z
http://www.caida.org/data/passive/ddos-20070804_dataset.xml

	I Introduction
	II Method Overview
	III Network Anomaly Detection
	III-A Large Deviation Principle for ER Random Graphs
	III-B A Formal Anomaly Detection Test

	IV Botnet Discovery
	IV-A Identification of Pivotal Nodes
	IV-B Botnet Discovery
	IV-B.1 Construction of the Social Correlation Graph
	IV-B.2 Modularity-based Community Detection
	IV-B.3 Refined Modularity

	IV-C Relaxation of the Optimization Problem
	IV-C.1 Randomization

	V Experimental Results
	V-A Description of Dataset
	V-B Results of Network Anomaly Detection
	V-C Results of Botnet Discovery

	VI Conclusion
	References

