663 research outputs found

    Reconstruction of compressed spectral imaging based on global structure and spectral correlation

    Full text link
    In this paper, a convolution sparse coding method based on global structure characteristics and spectral correlation is proposed for the reconstruction of compressive spectral images. The proposed method uses the convolution kernel to operate the global image, which can better preserve image structure information in the spatial dimension. To take full exploration of the constraints between spectra, the coefficients corresponding to the convolution kernel are constrained by the norm to improve spectral accuracy. And, to solve the problem that convolutional sparse coding is insensitive to low frequency, the global total-variation (TV) constraint is added to estimate the low-frequency components. It not only ensures the effective estimation of the low-frequency but also transforms the convolutional sparse coding into a de-noising process, which makes the reconstructing process simpler. Simulations show that compared with the current mainstream optimization methods (DeSCI and Gap-TV), the proposed method improves the reconstruction quality by up to 7 dB in PSNR and 10% in SSIM, and has a great improvement in the details of the reconstructed image

    High-resolution Multi-spectral Imaging with Diffractive Lenses and Learned Reconstruction

    Full text link
    Spectral imaging is a fundamental diagnostic technique with widespread application. Conventional spectral imaging approaches have intrinsic limitations on spatial and spectral resolutions due to the physical components they rely on. To overcome these physical limitations, in this paper, we develop a novel multi-spectral imaging modality that enables higher spatial and spectral resolutions. In the developed computational imaging modality, we exploit a diffractive lens, such as a photon sieve, for both dispersing and focusing the optical field, and achieve measurement diversity by changing the focusing behavior of this lens. Because the focal length of a diffractive lens is wavelength-dependent, each measurement is a superposition of differently blurred spectral components. To reconstruct the individual spectral images from these superimposed and blurred measurements, model-based fast reconstruction algorithms are developed with deep and analytical priors using alternating minimization and unrolling. Finally, the effectiveness and performance of the developed technique is illustrated for an application in astrophysical imaging under various observation scenarios in the extreme ultraviolet (EUV) regime. The results demonstrate that the technique provides not only diffraction-limited high spatial resolution, as enabled by diffractive lenses, but also the capability of resolving close-by spectral sources that would not otherwise be possible with the existing techniques. This work enables high resolution multi-spectral imaging with low cost designs for a variety of applications and spectral regimes.Comment: accepted for publication in IEEE Transactions on Computational Imaging, see DOI belo

    CalibFPA: A Focal Plane Array Imaging System based on Online Deep-Learning Calibration

    Full text link
    Compressive focal plane arrays (FPA) enable cost-effective high-resolution (HR) imaging by acquisition of several multiplexed measurements on a low-resolution (LR) sensor. Multiplexed encoding of the visual scene is typically performed via electronically controllable spatial light modulators (SLM). An HR image is then reconstructed from the encoded measurements by solving an inverse problem that involves the forward model of the imaging system. To capture system non-idealities such as optical aberrations, a mainstream approach is to conduct an offline calibration scan to measure the system response for a point source at each spatial location on the imaging grid. However, it is challenging to run calibration scans when using structured SLMs as they cannot encode individual grid locations. In this study, we propose a novel compressive FPA system based on online deep-learning calibration of multiplexed LR measurements (CalibFPA). We introduce a piezo-stage that locomotes a pre-printed fixed coded aperture. A deep neural network is then leveraged to correct for the influences of system non-idealities in multiplexed measurements without the need for offline calibration scans. Finally, a deep plug-and-play algorithm is used to reconstruct images from corrected measurements. On simulated and experimental datasets, we demonstrate that CalibFPA outperforms state-of-the-art compressive FPA methods. We also report analyses to validate the design elements in CalibFPA and assess computational complexity

    Computational Spectral Imaging: A Contemporary Overview

    Full text link
    Spectral imaging collects and processes information along spatial and spectral coordinates quantified in discrete voxels, which can be treated as a 3D spectral data cube. The spectral images (SIs) allow identifying objects, crops, and materials in the scene through their spectral behavior. Since most spectral optical systems can only employ 1D or maximum 2D sensors, it is challenging to directly acquire the 3D information from available commercial sensors. As an alternative, computational spectral imaging (CSI) has emerged as a sensing tool where the 3D data can be obtained using 2D encoded projections. Then, a computational recovery process must be employed to retrieve the SI. CSI enables the development of snapshot optical systems that reduce acquisition time and provide low computational storage costs compared to conventional scanning systems. Recent advances in deep learning (DL) have allowed the design of data-driven CSI to improve the SI reconstruction or, even more, perform high-level tasks such as classification, unmixing, or anomaly detection directly from 2D encoded projections. This work summarises the advances in CSI, starting with SI and its relevance; continuing with the most relevant compressive spectral optical systems. Then, CSI with DL will be introduced, and the recent advances in combining the physical optical design with computational DL algorithms to solve high-level tasks
    • …
    corecore