1,259 research outputs found

    Dietary assessment and obesity aviodance system based on vision: A review

    Get PDF
    Using technology for food objects recognition and estimation of its calories is very useful to spread food culture and awareness among people in the age of obesity due to the bad habits of food consumption and wide range of inappropriate food products.Image based sensing of such system is very promising with the large expanding of camera embedded portable devices such as smartphones, PC tablets, and laptops.In the past decade, researchers have been working on developing a reliable image based system for food recognition and calories estimation.Different approaches have tackled the system from different aspects.This paper reviews the state of the art of this interesting application, and presents its experimental results.Future work of research is presented in order to guide new researchers toward potential tracks to create more maturity and reliability to this application

    Understanding Physiological and Degenerative Natural Vision Mechanisms to Define Contrast and Contour Operators

    Get PDF
    BACKGROUND:Dynamical systems like neural networks based on lateral inhibition have a large field of applications in image processing, robotics and morphogenesis modeling. In this paper, we will propose some examples of dynamical flows used in image contrasting and contouring. METHODOLOGY:First we present the physiological basis of the retina function by showing the role of the lateral inhibition in the optical illusions and pathologic processes generation. Then, based on these biological considerations about the real vision mechanisms, we study an enhancement method for contrasting medical images, using either a discrete neural network approach, or its continuous version, i.e. a non-isotropic diffusion reaction partial differential system. Following this, we introduce other continuous operators based on similar biomimetic approaches: a chemotactic contrasting method, a viability contouring algorithm and an attentional focus operator. Then, we introduce the new notion of mixed potential Hamiltonian flows; we compare it with the watershed method and we use it for contouring. CONCLUSIONS:We conclude by showing the utility of these biomimetic methods with some examples of application in medical imaging and computed assisted surgery

    Learning to Segment Microscopy Images with Lazy Labels

    Get PDF
    The need for labour intensive pixel-wise annotation is a major limitation of many fully supervised learning methods for segmenting bioimages that can contain numerous object instances with thin separations. In this paper, we introduce a deep convolutional neural network for microscopy image segmentation. Annotation issues are circumvented by letting the network being trainable on coarse labels combined with only a very small number of images with pixel-wise annotations. We call this new labelling strategy `lazy' labels. Image segmentation is stratified into three connected tasks: rough inner region detection, object separation and pixel-wise segmentation. These tasks are learned in an end-to-end multi-task learning framework. The method is demonstrated on two microscopy datasets, where we show that the model gives accurate segmentation results even if exact boundary labels are missing for a majority of annotated data. It brings more flexibility and efficiency for training deep neural networks that are data hungry and is applicable to biomedical images with poor contrast at the object boundaries or with diverse textures and repeated patterns

    Analysis & Numerical Simulation of Indian Food Image Classification Using Convolutional Neural Network

    Get PDF
    Recognition of Indian food can be assumed to be a fine-grained visual task owing to recognition property of various food classes. It is therefore important to provide an optimized approach to segmentation and classification for different applications based on food recognition. Food computation mainly utilizes a computer science approach which needs food data from various data outlets like real-time images, social flat-forms, food journaling, food datasets etc, for different modalities. In order to consider Indian food images for a number of applications we need a proper analysis of food images with state-of-art-techniques. The appropriate segmentation and classification methods are required to forecast the relevant and upgraded analysis. As accurate segmentation lead to proper recognition and identification, in essence we have considered segmentation of food items from images. Considering the basic convolution neural network (CNN) model, there are edge and shape constraints that influence the outcome of segmentation on the edge side. Approaches that can solve the problem of edges need to be developed; an edge-adaptive As we have solved the problem of food segmentation with CNN, we also have difficulty in classifying food, which has been an important area for various types of applications. Food analysis is the primary component of health-related applications and is needed in our day to day life. It has the proficiency to directly predict the score function from image pixels, input layer to produce the tensor outputs and convolution layer is used for self- learning kernel through back-propagation. In this method, feature extraction and Max-Pooling is considered with multiple layers, and outputs are obtained using softmax functionality. The proposed implementation tests 92.89% accuracy by considering some data from yummly dataset and by own prepared dataset. Consequently, it is seen that some more improvement is needed in food image classification. We therefore consider the segmented feature of EA-CNN and concatenated it with the feature of our custom Inception-V3 to provide an optimized classification. It enhances the capacity of important features for further classification process. In extension we have considered south Indian food classes, with our own collected food image dataset and got 96.27% accuracy. The obtained accuracy for the considered dataset is very well in comparison with our foregoing method and state-of-the-art techniques.

    2015 Summer Research Symposium Abstract Book

    Get PDF
    2015 Summer volume of abstracts for science research projects conducted by students at Trinity College

    Evidence of diet, deification, and death within ancient Egyptian mummified animals

    Get PDF
    The clues to life and death of mummified animals can remain hidden beneath their wrappings. Developments in non-invasive imaging have enabled detailed study of their internal structures. Laboratory-based X-ray microcomputed tomography (microCT) and focussed imaging protocols permit smaller mummified remains, such as animals, to be studied at higher resolution. In this study, we use microCT to image three different animal mummies. Revealing the internal structures provides insights into their biography, the conditions in which they were kept, complex mummification practices, possible causes of death, and subsequent handling damage. Thousands of years after the production of these mummified animals, the X-ray microCT technique facilitates new investigations, revealing ‘harder’ skeletal structures, mummification materials, and even desiccated soft tissues. Potential evidence for an ‘opening of the mouth’ procedure was found in a snake, along with indicators of the poor conditions in which the snake was kept when alive, leading to dehydration. Examination of a cat mummy revealed it was less than five months old and had its neck purposefully broken. It was also possible to identify a bird mummy to species level from the X-ray data. Improved understanding of animal mummification through scientific imaging can thus inform conservation and understanding of past human-animal relationships

    A comparative evaluation for liver segmentation from spir images and a novel level set method using signed pressure force function

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2013Includes bibliographical references (leaves: 118-135)Text in English; Abstract: Turkish and Englishxv, 145 leavesDeveloping a robust method for liver segmentation from magnetic resonance images is a challenging task due to similar intensity values between adjacent organs, geometrically complex liver structure and injection of contrast media, which causes all tissues to have different gray level values. Several artifacts of pulsation and motion, and partial volume effects also increase difficulties for automatic liver segmentation from magnetic resonance images. In this thesis, we present an overview about liver segmentation methods in magnetic resonance images and show comparative results of seven different liver segmentation approaches chosen from deterministic (K-means based), probabilistic (Gaussian model based), supervised neural network (multilayer perceptron based) and deformable model based (level set) segmentation methods. The results of qualitative and quantitative analysis using sensitivity, specificity and accuracy metrics show that the multilayer perceptron based approach and a level set based approach which uses a distance regularization term and signed pressure force function are reasonable methods for liver segmentation from spectral pre-saturation inversion recovery images. However, the multilayer perceptron based segmentation method requires a higher computational cost. The distance regularization term based automatic level set method is very sensitive to chosen variance of Gaussian function. Our proposed level set based method that uses a novel signed pressure force function, which can control the direction and velocity of the evolving active contour, is faster and solves several problems of other applied methods such as sensitivity to initial contour or variance parameter of the Gaussian kernel in edge stopping functions without using any regularization term
    • …
    corecore